Format
Sort by
Items per page

Send to

Choose Destination

Links from PubMed

Items: 1 to 20 of 104

1.

Microphysiological Engineering of Self-Assembled and Perfusable Microvascular Beds for the Production of Vascularized Three-Dimensional Human Microtissues.

Paek J, Park SE, Lu Q, Park KT, Cho M, Oh JM, Kwon KW, Yi YS, Song JW, Edelstein HI, Ishibashi J, Yang W, Myerson JW, Kiseleva RY, Aprelev P, Hood ED, Stambolian D, Seale P, Muzykantov VR, Huh D.

ACS Nano. 2019 Jun 18. doi: 10.1021/acsnano.9b00686. [Epub ahead of print]

PMID:
31194909
2.

Polydopamine-Based Interfacial Engineering of Extracellular Matrix Hydrogels for the Construction and Long-Term Maintenance of Living Three-Dimensional Tissues.

Park SE, Georgescu A, Oh JM, Kwon KW, Huh D.

ACS Appl Mater Interfaces. 2019 Jul 10;11(27):23919-23925. doi: 10.1021/acsami.9b07912. Epub 2019 Jun 25.

PMID:
31199616
3.

Engineering of functional, perfusable 3D microvascular networks on a chip.

Kim S, Lee H, Chung M, Jeon NL.

Lab Chip. 2013 Apr 21;13(8):1489-500. doi: 10.1039/c3lc41320a. Erratum in: Lab Chip. 2013 Dec 21;13(24):4891.

PMID:
23440068
4.

Bioengineering vascularized tissue constructs using an injectable cell-laden enzymatically crosslinked collagen hydrogel derived from dermal extracellular matrix.

Kuo KC, Lin RZ, Tien HW, Wu PY, Li YC, Melero-Martin JM, Chen YC.

Acta Biomater. 2015 Nov;27:151-166. doi: 10.1016/j.actbio.2015.09.002. Epub 2015 Sep 5.

5.

Tissue-engineered microenvironment systems for modeling human vasculature.

Tourovskaia A, Fauver M, Kramer G, Simonson S, Neumann T.

Exp Biol Med (Maywood). 2014 Sep;239(9):1264-71. doi: 10.1177/1535370214539228. Epub 2014 Jul 16.

6.

Characterization of vasculogenic potential of human adipose-derived endothelial cells in a three-dimensional vascularized skin substitute.

Klar AS, Güven S, Zimoch J, Zapiórkowska NA, Biedermann T, Böttcher-Haberzeth S, Meuli-Simmen C, Martin I, Scherberich A, Reichmann E, Meuli M.

Pediatr Surg Int. 2016 Jan;32(1):17-27. doi: 10.1007/s00383-015-3808-7. Epub 2015 Nov 30.

PMID:
26621500
7.

Microfluidic-Based 3D Engineered Microvascular Networks and Their Applications in Vascularized Microtumor Models.

Wang X, Sun Q, Pei J.

Micromachines (Basel). 2018 Sep 27;9(10). pii: E493. doi: 10.3390/mi9100493. Review.

8.

A microphysiological model of the human placental barrier.

Blundell C, Tess ER, Schanzer AS, Coutifaris C, Su EJ, Parry S, Huh D.

Lab Chip. 2016 Aug 2;16(16):3065-73. doi: 10.1039/c6lc00259e.

9.

Perfusion-decellularization of human ear grafts enables ECM-based scaffolds for auricular vascularized composite tissue engineering.

Duisit J, Amiel H, Wüthrich T, Taddeo A, Dedriche A, Destoop V, Pardoen T, Bouzin C, Joris V, Magee D, Vögelin E, Harriman D, Dessy C, Orlando G, Behets C, Rieben R, Gianello P, Lengelé B.

Acta Biomater. 2018 Jun;73:339-354. doi: 10.1016/j.actbio.2018.04.009. Epub 2018 Apr 11.

10.

Direct 3D bioprinting of perfusable vascular constructs using a blend bioink.

Jia W, Gungor-Ozkerim PS, Zhang YS, Yue K, Zhu K, Liu W, Pi Q, Byambaa B, Dokmeci MR, Shin SR, Khademhosseini A.

Biomaterials. 2016 Nov;106:58-68. doi: 10.1016/j.biomaterials.2016.07.038. Epub 2016 Aug 2.

11.

Development of vascularized iPSC derived 3D-cardiomyocyte tissues by filtration Layer-by-Layer technique and their application for pharmaceutical assays.

Amano Y, Nishiguchi A, Matsusaki M, Iseoka H, Miyagawa S, Sawa Y, Seo M, Yamaguchi T, Akashi M.

Acta Biomater. 2016 Mar;33:110-21. doi: 10.1016/j.actbio.2016.01.033. Epub 2016 Jan 25.

PMID:
26821339
12.

Integration of Self-Assembled Microvascular Networks with Microfabricated PEG-Based Hydrogels.

Cuchiara MP, Gould DJ, McHale MK, Dickinson ME, West JL.

Adv Funct Mater. 2012 Nov 7;22(21):4511-4518.

13.

Engineering of vascularized 3D cell constructs to model cellular interactions through a vascular network.

Sano E, Mori C, Nashimoto Y, Yokokawa R, Kotera H, Torisawa YS.

Biomicrofluidics. 2018 May 16;12(4):042204. doi: 10.1063/1.5027183. eCollection 2018 Jul.

14.

Human Induced Pluripotent Stem Cell-Derived Endothelial Cells for Three-Dimensional Microphysiological Systems.

Kurokawa YK, Yin RT, Shang MR, Shirure VS, Moya ML, George SC.

Tissue Eng Part C Methods. 2017 Aug;23(8):474-484. doi: 10.1089/ten.TEC.2017.0133.

15.

A Microvascularized Tumor-mimetic Platform for Assessing Anti-cancer Drug Efficacy.

Pradhan S, Smith AM, Garson CJ, Hassani I, Seeto WJ, Pant K, Arnold RD, Prabhakarpandian B, Lipke EA.

Sci Rep. 2018 Feb 16;8(1):3171. doi: 10.1038/s41598-018-21075-9.

16.

A 96-well microplate bioreactor platform supporting individual dual perfusion and high-throughput assessment of simple or biofabricated 3D tissue models.

Parrish J, Lim KS, Baer K, Hooper GJ, Woodfield TBF.

Lab Chip. 2018 Sep 11;18(18):2757-2775. doi: 10.1039/c8lc00485d.

PMID:
30117514
17.

UniChip enables long-term recirculating unidirectional perfusion with gravity-driven flow for microphysiological systems.

Wang YI, Shuler ML.

Lab Chip. 2018 Aug 21;18(17):2563-2574. doi: 10.1039/c8lc00394g. Erratum in: Lab Chip. 2019 Jul 2;:.

PMID:
30046784
18.

Construction of three-dimensional vascularized cardiac tissue with cell sheet engineering.

Sakaguchi K, Shimizu T, Okano T.

J Control Release. 2015 May 10;205:83-8. doi: 10.1016/j.jconrel.2014.12.016. Epub 2014 Dec 16. Review.

PMID:
25523520
19.

Integrating perfusable vascular networks with a three-dimensional tissue in a microfluidic device.

Nashimoto Y, Hayashi T, Kunita I, Nakamasu A, Torisawa YS, Nakayama M, Takigawa-Imamura H, Kotera H, Nishiyama K, Miura T, Yokokawa R.

Integr Biol (Camb). 2017 Jun 19;9(6):506-518. doi: 10.1039/c7ib00024c.

PMID:
28561127
20.

Bioprinted 3D vascularized tissue model for drug toxicity analysis.

Massa S, Sakr MA, Seo J, Bandaru P, Arneri A, Bersini S, Zare-Eelanjegh E, Jalilian E, Cha BH, Antona S, Enrico A, Gao Y, Hassan S, Acevedo JP, Dokmeci MR, Zhang YS, Khademhosseini A, Shin SR.

Biomicrofluidics. 2017 Aug 1;11(4):044109. doi: 10.1063/1.4994708. eCollection 2017 Jul.

Supplemental Content

Support Center