Sort by
Items per page

Send to

Choose Destination

Links from PubMed

Items: 1 to 20 of 114


Shifts in Ectomycorrhizal Fungal Communities and Exploration Types Relate to the Environment and Fine-Root Traits Across Interior Douglas-Fir Forests of Western Canada.

Defrenne CE, Philpott TJ, Guichon SHA, Roach WJ, Pickles BJ, Simard SW.

Front Plant Sci. 2019 May 22;10:643. doi: 10.3389/fpls.2019.00643. eCollection 2019.


Intraspecific Fine-Root Trait-Environment Relationships across Interior Douglas-Fir Forests of Western Canada.

Defrenne CE, McCormack ML, Roach WJ, Addo-Danso SD, Simard SW.

Plants (Basel). 2019 Jun 30;8(7). pii: E199. doi: 10.3390/plants8070199.


Host and habitat filtering in seedling root-associated fungal communities: taxonomic and functional diversity are altered in 'novel' soils.

Pickles BJ, Gorzelak MA, Green DS, Egger KN, Massicotte HB.

Mycorrhiza. 2015 Oct;25(7):517-31. doi: 10.1007/s00572-015-0630-y. Epub 2015 Feb 20.


Diversity and spatial structure of belowground plant-fungal symbiosis in a mixed subtropical forest of ectomycorrhizal and arbuscular mycorrhizal plants.

Toju H, Sato H, Tanabe AS.

PLoS One. 2014 Jan 28;9(1):e86566. doi: 10.1371/journal.pone.0086566. eCollection 2014.


Local adaptation in migrated interior Douglas-fir seedlings is mediated by ectomycorrhizas and other soil factors.

Pickles BJ, Twieg BD, O'Neill GA, Mohn WW, Simard SW.

New Phytol. 2015 Aug;207(3):858-71. doi: 10.1111/nph.13360. Epub 2015 Mar 10.


Soil spore bank communities of ectomycorrhizal fungi in endangered Chinese Douglas-fir forests.

Wen Z, Shi L, Tang Y, Hong L, Xue J, Xing J, Chen Y, Nara K.

Mycorrhiza. 2018 Jan;28(1):49-58. doi: 10.1007/s00572-017-0800-1. Epub 2017 Sep 23.


Limited Effects of Variable-Retention Harvesting on Fungal Communities Decomposing Fine Roots in Coastal Temperate Rainforests.

Philpott TJ, Barker JS, Prescott CE, Grayston SJ.

Appl Environ Microbiol. 2018 Jan 17;84(3). pii: e02061-17. doi: 10.1128/AEM.02061-17. Print 2018 Feb 1.


Ectomycorrhizal fungal communities of oak savanna are distinct from forest communities.

Dickie IA, Dentinger BT, Avis PG, McLaughlin DJ, Reich PB.

Mycologia. 2009 Jul-Aug;101(4):473-83.


Ectomycorrhizal fungi associated with ponderosa pine and Douglas-fir: a comparison of species richness in native western North American forests and Patagonian plantations from Argentina.

Barroetaveña C, Cázares E, Rajchenberg M.

Mycorrhiza. 2007 Jul;17(5):355-373. doi: 10.1007/s00572-007-0121-x. Epub 2007 Mar 8. Review.


Ectomycorrhizal Fungal Communities and Their Functional Traits Mediate Plant-Soil Interactions in Trace Element Contaminated Soils.

Gil-Martínez M, López-García Á, Domínguez MT, Navarro-Fernández CM, Kjøller R, Tibbett M, Marañón T.

Front Plant Sci. 2018 Nov 20;9:1682. doi: 10.3389/fpls.2018.01682. eCollection 2018.


Carbon sequestration is related to mycorrhizal fungal community shifts during long-term succession in boreal forests.

Clemmensen KE, Finlay RD, Dahlberg A, Stenlid J, Wardle DA, Lindahl BD.

New Phytol. 2015 Mar;205(4):1525-36. doi: 10.1111/nph.13208. Epub 2014 Dec 11.


Effects of growth medium, nutrients, water, and aeration on mycorrhization and biomass allocation of greenhouse-grown interior Douglas-fir seedlings.

Kazantseva O, Bingham M, Simard SW, Berch SM.

Mycorrhiza. 2009 Nov;20(1):51-66. doi: 10.1007/s00572-009-0263-0. Epub 2009 Jul 2.


Douglas-fir ectomycorrhizae in 40- and 400-year-old stands: mycobiont availability to late successional western hemlock.

Horton TR, Molina R, Hood K.

Mycorrhiza. 2005 Sep;15(6):393-403. Epub 2005 Jul 15.


Ectomycorrhizas and tree seedling establishment are strongly influenced by forest edge proximity but not soil inoculum.

Grove S, Saarman NP, Gilbert GS, Faircloth B, Haubensak KA, Parker IM.

Ecol Appl. 2019 Apr;29(3):e01867. doi: 10.1002/eap.1867. Epub 2019 Feb 27.


Environmental drivers of ectomycorrhizal communities in Europe's temperate oak forests.

Suz LM, Barsoum N, Benham S, Dietrich HP, Fetzer KD, Fischer R, García P, Gehrman J, Kristöfel F, Manninger M, Neagu S, Nicolas M, Oldenburger J, Raspe S, Sánchez G, Schröck HW, Schubert A, Verheyen K, Verstraeten A, Bidartondo MI.

Mol Ecol. 2014 Nov;23(22):5628-44. doi: 10.1111/mec.12947. Epub 2014 Nov 7.


Ectomycorrhizal fungal maladaptation and growth reductions associated with assisted migration of Douglas-fir.

Kranabetter JM, Stoehr M, O'Neill GA.

New Phytol. 2015 May;206(3):1135-44. doi: 10.1111/nph.13287. Epub 2015 Jan 26.


Community composition of root-associated fungi in a Quercus-dominated temperate forest: "codominance" of mycorrhizal and root-endophytic fungi.

Toju H, Yamamoto S, Sato H, Tanabe AS, Gilbert GS, Kadowaki K.

Ecol Evol. 2013 May;3(5):1281-93. doi: 10.1002/ece3.546. Epub 2013 Apr 5.


Molecular analysis of bacterial communities associated with the roots of Douglas fir (Pseudotsuga menziesii) colonized by different ectomycorrhizal fungi.

Burke DJ, Dunham SM, Kretzer AM.

FEMS Microbiol Ecol. 2008 Aug;65(2):299-309. doi: 10.1111/j.1574-6941.2008.00491.x. Epub 2008 May 1.


Forest stand productivity derived from site conditions: an assessment of old Douglas-fir stands (Pseudotsuga menziesii (Mirb.) Franco var. menziesii) in Central Europe.

Eckhart T, Pötzelsberger E, Koeck R, Thom D, Lair GJ, van Loo M, Hasenauer H.

Ann For Sci. 2019;76(1):19. doi: 10.1007/s13595-019-0805-3. Epub 2019 Feb 20.

Supplemental Content

Support Center