Format
Sort by
Items per page

Send to

Choose Destination

Links from PubMed

Items: 1 to 20 of 105

1.

High-Performance and Reactivation Characteristics of High-Quality, Graphene-Supported SnS2 Heterojunctions for a Lithium-Ion Battery Anode.

Li J, Han S, Zhang C, Wei W, Gu M, Meng L.

ACS Appl Mater Interfaces. 2019 Jun 26;11(25):22314-22322. doi: 10.1021/acsami.9b04243. Epub 2019 Jun 13.

PMID:
31190523
2.

Hierarchical Graphene-Encapsulated Hollow SnO2@SnS2 Nanostructures with Enhanced Lithium Storage Capability.

Xu W, Xie Z, Cui X, Zhao K, Zhang L, Dietrich G, Dooley KM, Wang Y.

ACS Appl Mater Interfaces. 2015 Oct 14;7(40):22533-41. doi: 10.1021/acsami.5b06765. Epub 2015 Sep 30.

PMID:
26389757
3.

Heterostructured SnO2-SnS2@C Embedded in Nitrogen-Doped Graphene as a Robust Anode Material for Lithium-Ion Batteries.

Li H, Zhang B, Wang X, Zhang J, An T, Ding Z, Yu W, Tong H.

Front Chem. 2019 May 14;7:339. doi: 10.3389/fchem.2019.00339. eCollection 2019.

4.

Self-Assembled Framework Formed During Lithiation of SnS2 Nanoplates Revealed by in Situ Electron Microscopy.

Yin K, Zhang M, Hood ZD, Pan J, Meng YS, Chi M.

Acc Chem Res. 2017 Jul 18;50(7):1513-1520. doi: 10.1021/acs.accounts.7b00086. Epub 2017 Jul 6.

5.

Advanced MoS2 and graphene heterostructures as high-performance anode for sodium-ion batteries.

Li J, Wang H, Wei W, Meng L.

Nanotechnology. 2019 Mar 8;30(10):104003. doi: 10.1088/1361-6528/aaf76c. Epub 2018 Dec 10.

PMID:
30530940
6.

Surface-Confined SnS2 @C@rGO as High-Performance Anode Materials for Sodium- and Potassium-Ion Batteries.

Li D, Sun Q, Zhang Y, Chen L, Wang Z, Liang Z, Si P, Ci L.

ChemSusChem. 2019 Apr 18. doi: 10.1002/cssc.201900719. [Epub ahead of print]

PMID:
30997950
7.

SnS2 nanoplatelet@graphene nanocomposites as high-capacity anode materials for sodium-ion batteries.

Xie X, Su D, Chen S, Zhang J, Dou S, Wang G.

Chem Asian J. 2014 Jun;9(6):1611-7. doi: 10.1002/asia.201400018. Epub 2014 Apr 11.

PMID:
24729583
8.

Enhanced sodium-ion battery performance by structural phase transition from two-dimensional hexagonal-SnS2 to orthorhombic-SnS.

Zhou T, Pang WK, Zhang C, Yang J, Chen Z, Liu HK, Guo Z.

ACS Nano. 2014 Aug 26;8(8):8323-33. doi: 10.1021/nn503582c. Epub 2014 Jul 14.

PMID:
25010575
9.

Exfoliated-SnSâ‚‚ restacked on graphene as a high-capacity, high-rate, and long-cycle life anode for sodium ion batteries.

Liu Y, Kang H, Jiao L, Chen C, Cao K, Wang Y, Yuan H.

Nanoscale. 2015 Jan 28;7(4):1325-32. doi: 10.1039/c4nr05106h.

PMID:
25367597
10.

Vanadium Nitride Nanowire Supported SnS2 Nanosheets with High Reversible Capacity as Anode Material for Lithium Ion Batteries.

Balogun MS, Qiu W, Jian J, Huang Y, Luo Y, Yang H, Liang C, Lu X, Tong Y.

ACS Appl Mater Interfaces. 2015 Oct 21;7(41):23205-15. doi: 10.1021/acsami.5b07044. Epub 2015 Oct 12.

PMID:
26439604
11.

In-situ Grown SnS2 Nanosheets on rGO as an Advanced Anode Material for Lithium and Sodium Ion Batteries.

Chen H, Zhang B, Zhang J, Yu W, Zheng J, Ding Z, Li H, Ming L, Bengono DAM, Chen S, Tong H.

Front Chem. 2018 Dec 18;6:629. doi: 10.3389/fchem.2018.00629. eCollection 2018.

12.

A Simple One-Pot Strategy for Synthesizing Ultrafine SnS2 Nanoparticle/Graphene Composites as Anodes for Lithium/Sodium-Ion Batteries.

Li X, Sun X, Gao Z, Hu X, Ling R, Cai S, Zheng C, Hu W.

ChemSusChem. 2018 May 9;11(9):1549-1557. doi: 10.1002/cssc.201800073. Epub 2018 Apr 17.

PMID:
29516664
13.

Lithiation-assisted exfoliation and reduction of SnS2 to SnS decorated on lithium-integrated graphene for efficient energy storage.

Zhao B, Chen F, Wang Z, Huang S, Jiang Y, Chen Z.

Nanoscale. 2017 Nov 23;9(45):17922-17932. doi: 10.1039/c7nr06798d.

PMID:
29124272
14.

Sandwich-Like SnS2/Graphene/SnS2 with Expanded Interlayer Distance as High-Rate Lithium/Sodium-Ion Battery Anode Materials.

Jiang Y, Song D, Wu J, Wang Z, Huang S, Xu Y, Chen Z, Zhao B, Zhang J.

ACS Nano. 2019 Jul 19. doi: 10.1021/acsnano.9b03330. [Epub ahead of print]

PMID:
31323180
15.

Improved Electrochemical Performance Based on Nanostructured SnS2@CoS2-rGO Composite Anode for Sodium-Ion Batteries.

Wang X, Li X, Li Q, Li H, Xu J, Wang H, Zhao G, Lu L, Lin X, Li H, Li S.

Nanomicro Lett. 2018;10(3):46. doi: 10.1007/s40820-018-0200-x. Epub 2018 Apr 13.

16.

Interfacial engineering of 0D/2D SnS2 heterostructure onto nitrogen-doped graphene for boosted lithium storage capability.

Gao D, Wang Y, Liu Y, Sun H, Wu M, Zhang H.

J Colloid Interface Sci. 2019 Mar 7;538:116-124. doi: 10.1016/j.jcis.2018.11.098. Epub 2018 Nov 26.

PMID:
30502532
17.

Hierarchical MoO3/SnS2 core-shell nanowires with enhanced electrochemical performance for lithium-ion batteries.

Hu C, Shu H, Shen Z, Zhao T, Liang P, Chen X.

Phys Chem Chem Phys. 2018 Jun 27;20(25):17171-17179. doi: 10.1039/c8cp01799a.

PMID:
29900445
18.

Tin Disulfide Nanoplates on Graphene Nanoribbons for Full Lithium Ion Batteries.

Gao C, Li L, Raji AR, Kovalchuk A, Peng Z, Fei H, He Y, Kim ND, Zhong Q, Xie E, Tour JM.

ACS Appl Mater Interfaces. 2015 Dec 9;7(48):26549-56. doi: 10.1021/acsami.5b07768. Epub 2015 Nov 24.

PMID:
26562719
19.

Promising Dual-Doped Graphene Aerogel/SnS2 Nanocrystal Building High Performance Sodium Ion Batteries.

Fan L, Li X, Song X, Hu N, Xiong D, Koo A, Sun X.

ACS Appl Mater Interfaces. 2018 Jan 24;10(3):2637-2648. doi: 10.1021/acsami.7b18195. Epub 2018 Jan 12.

PMID:
29281247
20.

Solid-State Fabrication of SnS2/C Nanospheres for High-Performance Sodium Ion Battery Anode.

Wang J, Luo C, Mao J, Zhu Y, Fan X, Gao T, Mignerey AC, Wang C.

ACS Appl Mater Interfaces. 2015 Jun 3;7(21):11476-81. doi: 10.1021/acsami.5b02413. Epub 2015 May 21.

PMID:
25970036

Supplemental Content

Support Center