Sort by
Items per page

Send to

Choose Destination

Links from PubMed

Items: 1 to 20 of 97


Slippery Nanoparticles as a Diffusion Platform for Mucin Producing Gastrointestinal Tumors.

Khalili M, Zhou H, Thadi A, Daniels L, Fan Z, Morano WF, Ang J, Goldstein E, Polyak B, Mapow BC, Cheng H, Bowne WB.

Ann Surg Oncol. 2019 Jun 11. doi: 10.1245/s10434-019-07493-7. [Epub ahead of print]


Preferential tumor accumulation and desirable interstitial penetration of poly(lactic-co-glycolic acid) nanoparticles with dual coating of chitosan oligosaccharide and polyethylene glycol-poly(D,L-lactic acid).

Wang G, Chen Y, Wang P, Wang Y, Hong H, Li Y, Qian J, Yuan Y, Yu B, Liu C.

Acta Biomater. 2016 Jan;29:248-260. doi: 10.1016/j.actbio.2015.10.017. Epub 2015 Oct 22.


Conjugation of cell-penetrating peptides with poly(lactic-co-glycolic acid)-polyethylene glycol nanoparticles improves ocular drug delivery.

Vasconcelos A, Vega E, Pérez Y, Gómara MJ, García ML, Haro I.

Int J Nanomedicine. 2015 Jan 27;10:609-31. doi: 10.2147/IJN.S71198. eCollection 2015.


Engineered nanomedicine for myeloma and bone microenvironment targeting.

Swami A, Reagan MR, Basto P, Mishima Y, Kamaly N, Glavey S, Zhang S, Moschetta M, Seevaratnam D, Zhang Y, Liu J, Memarzadeh M, Wu J, Manier S, Shi J, Bertrand N, Lu ZN, Nagano K, Baron R, Sacco A, Roccaro AM, Farokhzad OC, Ghobrial IM.

Proc Natl Acad Sci U S A. 2014 Jul 15;111(28):10287-92. doi: 10.1073/pnas.1401337111. Epub 2014 Jun 30.


Engineering PLGA nano-based systems through understanding the influence of nanoparticle properties and cell-penetrating peptides for cochlear drug delivery.

Cai H, Liang Z, Huang W, Wen L, Chen G.

Int J Pharm. 2017 Oct 30;532(1):55-65. doi: 10.1016/j.ijpharm.2017.08.084. Epub 2017 Sep 7.


Poly aspartic acid peptide-linked PLGA based nanoscale particles: potential for bone-targeting drug delivery applications.

Jiang T, Yu X, Carbone EJ, Nelson C, Kan HM, Lo KW.

Int J Pharm. 2014 Nov 20;475(1-2):547-57. doi: 10.1016/j.ijpharm.2014.08.067. Epub 2014 Sep 4.


Synthesis and characterization of tumor-targeted copolymer nanocarrier modified by transferrin.

Liu R, Wang Y, Li X, Bao W, Xia G, Chen W, Cheng J, Xu Y, Guo L, Chen B.

Drug Des Devel Ther. 2015 May 22;9:2705-19. doi: 10.2147/DDDT.S80948. eCollection 2015.


Folate-modified PLGA nanoparticles for tumor-targeted delivery of pheophorbide a in vivo.

Son J, Yang SM, Yi G, Roh YJ, Park H, Park JM, Choi MG, Koo H.

Biochem Biophys Res Commun. 2018 Apr 6;498(3):523-528. doi: 10.1016/j.bbrc.2018.03.013. Epub 2018 Mar 5.


Small molecule delivery to solid tumors with chitosan-coated PLGA particles: A lesson learned from comparative imaging.

Park J, Pei Y, Hyun H, Castanares MA, Collins DS, Yeo Y.

J Control Release. 2017 Dec 28;268:407-415. doi: 10.1016/j.jconrel.2017.10.037. Epub 2017 Oct 27.


Enhanced cellular uptake of folic acid-conjugated PLGA-PEG nanoparticles loaded with vincristine sulfate in human breast cancer.

Chen J, Li S, Shen Q, He H, Zhang Y.

Drug Dev Ind Pharm. 2011 Nov;37(11):1339-46. doi: 10.3109/03639045.2011.575162. Epub 2011 Apr 27.


Enhanced uptake and transport of PLGA-modified nanoparticles in cervical cancer.

Sims LB, Curtis LT, Frieboes HB, Steinbach-Rankins JM.

J Nanobiotechnology. 2016 Apr 22;14:33. doi: 10.1186/s12951-016-0185-x.


Non-specific binding and steric hindrance thresholds for penetration of particulate drug carriers within tumor tissue.

Dancy JG, Wadajkar AS, Schneider CS, Mauban JRH, Goloubeva OG, Woodworth GF, Winkles JA, Kim AJ.

J Control Release. 2016 Sep 28;238:139-148. doi: 10.1016/j.jconrel.2016.07.034. Epub 2016 Jul 25.


Comparative evaluation of the degree of pegylation of poly(lactic-co-glycolic acid) nanoparticles in enhancing central nervous system delivery of loperamide.

Kirby BP, Pabari R, Chen CN, Al Baharna M, Walsh J, Ramtoola Z.

J Pharm Pharmacol. 2013 Oct;65(10):1473-81. doi: 10.1111/jphp.12125. Epub 2013 Aug 1.


PLGA-PLL-PEG-Tf-based targeted nanoparticles drug delivery system enhance antitumor efficacy via intrinsic apoptosis pathway.

Bao W, Liu R, Wang Y, Wang F, Xia G, Zhang H, Li X, Yin H, Chen B.

Int J Nanomedicine. 2015 Jan 12;10:557-66. doi: 10.2147/IJN.S75090. eCollection 2015.


Distribution of PLGA-modified nanoparticles in 3D cell culture models of hypo-vascularized tumor tissue.

Sims LB, Huss MK, Frieboes HB, Steinbach-Rankins JM.

J Nanobiotechnology. 2017 Oct 5;15(1):67. doi: 10.1186/s12951-017-0298-x.


Polydopamine-based surface modification for the development of peritumorally activatable nanoparticles.

Gullotti E, Park J, Yeo Y.

Pharm Res. 2013 Aug;30(8):1956-67. doi: 10.1007/s11095-013-1039-y. Epub 2013 Apr 23.


Development and characterization of sorafenib-loaded PLGA nanoparticles for the systemic treatment of liver fibrosis.

Lin TsT, Gao DY, Liu YC, Sung YC, Wan D, Liu JY, Chiang T, Wang L, Chen Y.

J Control Release. 2016 Jan 10;221:62-70. doi: 10.1016/j.jconrel.2015.11.003. Epub 2015 Nov 6.


Impact of Surface Polyethylene Glycol (PEG) Density on Biodegradable Nanoparticle Transport in Mucus ex Vivo and Distribution in Vivo.

Xu Q, Ensign LM, Boylan NJ, Schön A, Gong X, Yang JC, Lamb NW, Cai S, Yu T, Freire E, Hanes J.

ACS Nano. 2015 Sep 22;9(9):9217-27. doi: 10.1021/acsnano.5b03876. Epub 2015 Aug 31.


[Transport of PLGA nanoparticles across Caco-2/HT29-MTX co-cultured cells].

Wen Z, Li G, Lin DH, Wang JT, Qin LF, Guo GP.

Yao Xue Xue Bao. 2013 Dec;48(12):1829-35. Chinese.


Supplemental Content

Support Center