Format
Sort by
Items per page

Send to

Choose Destination

Links from PubMed

Items: 1 to 20 of 97

1.

A Hypericin Delivery System Based on Polydopamine Coated Cerium Oxide Nanorods for Targeted Photodynamic Therapy.

Wang Y, Zhang Y, Jin M, Lv Y, Pei Z, Pei Y.

Polymers (Basel). 2019 Jun 10;11(6). pii: E1025. doi: 10.3390/polym11061025.

2.

Facile fabrication of hypericin-entrapped glyconanoparticles for targeted photodynamic therapy.

Shao C, Shang K, Xu H, Zhang Y, Pei Z, Pei Y.

Int J Nanomedicine. 2018 Jul 23;13:4319-4331. doi: 10.2147/IJN.S161262. eCollection 2018.

3.

Biologically Inspired Polydopamine Capped Gold Nanorods for Drug Delivery and Light-Mediated Cancer Therapy.

Wang S, Zhao X, Wang S, Qian J, He S.

ACS Appl Mater Interfaces. 2016 Sep 21;8(37):24368-84. doi: 10.1021/acsami.6b05907. Epub 2016 Sep 8.

PMID:
27564325
4.

Hypericin-Loaded Carbon Nanohorn Hybrid for Combined Photodynamic and Photothermal Therapy in Vivo.

Gao C, Jian J, Lin Z, Yu YX, Jiang BP, Chen H, Shen XC.

Langmuir. 2019 Jun 25;35(25):8228-8237. doi: 10.1021/acs.langmuir.9b00624. Epub 2019 Jun 12.

PMID:
31140812
5.

Differential susceptibility of primary cultured human skin cells to hypericin PDT in an in vitro model.

Popovic A, Wiggins T, Davids LM.

J Photochem Photobiol B. 2015 Aug;149:249-56. doi: 10.1016/j.jphotobiol.2015.06.009. Epub 2015 Jun 14.

PMID:
26114219
6.

Selective photodynamic effects on breast cancer cells provided by P123 Pluronic®-based nanoparticles modulating hypericin delivery.

Damke GMZF, Souza RP, Montanha MC, Damke E, Gonçalves RS, Cesar GB, Kimura E, Caetano W, Hioka N, Consolaro MEL.

Anticancer Agents Med Chem. 2018 Nov 1. doi: 10.2174/1871520618666181102091010. [Epub ahead of print]

PMID:
30387402
7.

Docetaxel (DTX)-loaded polydopamine-modified TPGS-PLA nanoparticles as a targeted drug delivery system for the treatment of liver cancer.

Zhu D, Tao W, Zhang H, Liu G, Wang T, Zhang L, Zeng X, Mei L.

Acta Biomater. 2016 Jan;30:144-154. doi: 10.1016/j.actbio.2015.11.031. Epub 2015 Nov 18.

PMID:
26602819
8.

Dual-responsive dithio-polydopamine coated porous CeO2 nanorods for targeted and synergistic drug delivery.

Zhang Y, Wu X, Hou C, Shang K, Yang K, Tian Z, Pei Z, Qu Y, Pei Y.

Int J Nanomedicine. 2018 Apr 12;13:2161-2173. doi: 10.2147/IJN.S152002. eCollection 2018.

9.

A Facile Approach for Fabrication of Core-Shell Magnetic Molecularly Imprinted Nanospheres towards Hypericin.

Cheng W, Fan F, Zhang Y, Pei Z, Wang W, Pei Y.

Polymers (Basel). 2017 Apr 7;9(4). pii: E135. doi: 10.3390/polym9040135.

10.

Hypericin-assisted photodynamic therapy against anaplastic thyroid cancer.

Kim H, Kim SW, Seok KH, Hwang CW, Ahn JC, Jin JO, Kang HW.

Photodiagnosis Photodyn Ther. 2018 Dec;24:15-21. doi: 10.1016/j.pdpdt.2018.08.008. Epub 2018 Aug 15.

PMID:
30118906
11.

The diverse roles of glutathione-associated cell resistance against hypericin photodynamic therapy.

Theodossiou TA, Olsen CE, Jonsson M, Kubin A, Hothersall JS, Berg K.

Redox Biol. 2017 Aug;12:191-197. doi: 10.1016/j.redox.2017.02.018. Epub 2017 Feb 24.

12.

Benefits of hypericin transport and delivery by low- and high-density lipoproteins to cancer cells: From in vitro to ex ovo.

Lenkavska L, Blascakova L, Jurasekova Z, Macajova M, Bilcik B, Cavarga I, Miskovsky P, Huntosova V.

Photodiagnosis Photodyn Ther. 2019 Mar;25:214-224. doi: 10.1016/j.pdpdt.2018.12.013. Epub 2018 Dec 28.

PMID:
30597213
13.

Loading of Indocyanine Green within Polydopamine-Coated Laponite Nanodisks for Targeted Cancer Photothermal and Photodynamic Therapy.

Xu F, Liu M, Li X, Xiong Z, Cao X, Shi X, Guo R.

Nanomaterials (Basel). 2018 May 19;8(5). pii: E347. doi: 10.3390/nano8050347.

14.

Selective cytotoxicity effect of cerium oxide nanoparticles under UV irradiation.

Zhang L, Jiang H, Selke M, Wang X.

J Biomed Nanotechnol. 2014 Feb;10(2):278-86.

PMID:
24738336
15.

Response surface method optimization of a novel Hypericin formulation in P123 micelles for colorectal cancer and antimicrobial photodynamic therapy.

Montanha MC, Silva LL, Pangoni FBB, Cesar GB, Gonçalves RS, Caetano W, Hioka N, Tominaga TT, Consolaro MEL, Diniz A, Kimura E.

J Photochem Photobiol B. 2017 May;170:247-255. doi: 10.1016/j.jphotobiol.2017.04.008. Epub 2017 Apr 12.

PMID:
28454049
16.

Hypericin in the Dark: Foe or Ally in Photodynamic Therapy?

Huntosova V, Stroffekova K.

Cancers (Basel). 2016 Oct 14;8(10). pii: E93. Review.

17.

Combined Cancer Chemo-Photodynamic and Photothermal Therapy Based on ICG/PDA/TPZ-Loaded Nanoparticles.

Huang X, Wu J, He M, Hou X, Wang Y, Cai X, Xin H, Gao F, Chen Y.

Mol Pharm. 2019 May 6;16(5):2172-2183. doi: 10.1021/acs.molpharmaceut.9b00119. Epub 2019 Apr 12.

PMID:
30978027
18.

Polydopamine Nanoparticles Enhance Drug Release for Combined Photodynamic and Photothermal Therapy.

Poinard B, Neo SZY, Yeo ELL, Heng HPS, Neoh KG, Kah JCY.

ACS Appl Mater Interfaces. 2018 Jun 27;10(25):21125-21136. doi: 10.1021/acsami.8b04799. Epub 2018 Jun 18.

PMID:
29871485
19.

Cell death response of U87 glioma cells on hypericin photoactivation is mediated by dynamics of hypericin subcellular distribution and its aggregation in cellular organelles.

Huntosova V, Nadova Z, Dzurova L, Jakusova V, Sureau F, Miskovsky P.

Photochem Photobiol Sci. 2012 Sep;11(9):1428-36. doi: 10.1039/c2pp05409d. Epub 2012 Jun 22.

PMID:
22729350
20.

Hypericin-bearing magnetic iron oxide nanoparticles for selective drug delivery in photodynamic therapy.

Unterweger H, Subatzus D, Tietze R, Janko C, Poettler M, Stiegelschmitt A, Schuster M, Maake C, Boccaccini AR, Alexiou C.

Int J Nanomedicine. 2015 Nov 12;10:6985-96. doi: 10.2147/IJN.S92336. eCollection 2015.

Supplemental Content

Support Center