Format
Sort by
Items per page

Send to

Choose Destination

Links from PubMed

Items: 1 to 20 of 102

1.

Improved Charge Transfer and Hot Spots by Doping and Modulating the Semiconductor Structure: A High Sensitivity and Renewability Surface-Enhanced Raman Spectroscopy Substrate.

Yao J, Quan Y, Gao R, Li J, Chen L, Liu Y, Lang J, Shen H, Wang Y, Yang J, Gao M.

Langmuir. 2019 Jul 9;35(27):8921-8926. doi: 10.1021/acs.langmuir.9b00754. Epub 2019 Jun 22.

PMID:
31184904
2.

A highly sensitive and recyclable SERS substrate based on Ag-nanoparticle-decorated ZnO nanoflowers in ordered arrays.

Tao Q, Li S, Ma C, Liu K, Zhang QY.

Dalton Trans. 2015 Feb 21;44(7):3447-53. doi: 10.1039/c4dt03596h.

PMID:
25604882
3.

Zinc oxide/silver nanoarrays as reusable SERS substrates with controllable 'hot-spots' for highly reproducible molecular sensing.

Kandjani AE, Mohammadtaheri M, Thakkar A, Bhargava SK, Bansal V.

J Colloid Interface Sci. 2014 Dec 15;436:251-7. doi: 10.1016/j.jcis.2014.09.017. Epub 2014 Sep 17.

PMID:
25278363
4.

Highly Efficient Photoinduced Enhanced Raman Spectroscopy (PIERS) from Plasmonic Nanoparticles Decorated 3D Semiconductor Arrays for Ultrasensitive, Portable, and Recyclable Detection of Organic Pollutants.

Zhang M, Sun H, Chen X, Yang J, Shi L, Chen T, Bao Z, Liu J, Wu Y.

ACS Sens. 2019 Jun 28;4(6):1670-1681. doi: 10.1021/acssensors.9b00562. Epub 2019 Jun 4.

PMID:
31117365
5.

Ag-decorated TiO₂ nanograss for 3D SERS-active substrate with visible light self-cleaning and reactivation.

Xu SC, Zhang YX, Luo YY, Wang S, Ding HL, Xu JM, Li GH.

Analyst. 2013 Aug 21;138(16):4519-25. doi: 10.1039/c3an00750b. Epub 2013 Jun 18.

PMID:
23774192
6.
7.

Recyclable three-dimensional Ag nanoparticle-decorated TiO2 nanorod arrays for surface-enhanced Raman scattering.

Fang H, Zhang CX, Liu L, Zhao YM, Xu HJ.

Biosens Bioelectron. 2015 Feb 15;64:434-41. doi: 10.1016/j.bios.2014.09.053. Epub 2014 Sep 28.

PMID:
25282397
8.

Gold@silver bimetal nanoparticles/pyramidal silicon 3D substrate with high reproducibility for high-performance SERS.

Zhang C, Jiang SZ, Yang C, Li CH, Huo YY, Liu XY, Liu AH, Wei Q, Gao SS, Gao XG, Man BY.

Sci Rep. 2016 May 4;6:25243. doi: 10.1038/srep25243.

9.

Vertically standing nanoporous Al-Ag zig-zag silver nanorod arrays for highly active SERS substrates.

Rajput A, Kumar S, Singh JP.

Analyst. 2017 Oct 9;142(20):3959-3966. doi: 10.1039/c7an00851a.

PMID:
28951908
10.

Surface-enhanced Raman scattering activities of carbon nanotubes decorated with silver nanoparticles.

Zhang X, Zhang J, Quan J, Wang N, Zhu Y.

Analyst. 2016 Oct 7;141(19):5527-34. doi: 10.1039/c6an00850j. Epub 2016 Jul 11.

PMID:
27396689
11.

Si/ZnO nanocomb arrays decorated with Ag nanoparticles for highly efficient surface-enhanced Raman scattering.

Yin HJ, Chan YF, Wu ZL, Xu HJ.

Opt Lett. 2014 Jul 15;39(14):4184-7. doi: 10.1364/OL.39.004184.

PMID:
25121682
12.

Investigation of the Charge-Transfer Between Ga-Doped ZnO Nanoparticles and Molecules Using Surface-Enhanced Raman Scattering: Doping Induced Band-Gap Shrinkage.

Li P, Wang X, Zhang X, Zhang L, Yang X, Zhao B.

Front Chem. 2019 Mar 19;7:144. doi: 10.3389/fchem.2019.00144. eCollection 2019.

13.

Three-Dimensional Hierarchical Reticular Nanostructure of Fulfora candelaria Wing Decorated by Ag Nanoislands as Practical SERS-Active Substrates.

Wang M, Wang Y, Yan X, Sun X, Shi G, Zhang K, Ren L, Ma W.

Nanomaterials (Basel). 2018 Nov 5;8(11). pii: E905. doi: 10.3390/nano8110905.

14.

A Ag synchronously deposited and doped TiO2 hybrid as an ultrasensitive SERS substrate: a multifunctional platform for SERS detection and photocatalytic degradation.

Yang L, Sang Q, Du J, Yang M, Li X, Shen Y, Han X, Jiang X, Zhao B.

Phys Chem Chem Phys. 2018 Jun 6;20(22):15149-15157. doi: 10.1039/c8cp01680a.

PMID:
29789850
15.

A General Method for Large-Scale Fabrication of Semiconducting Oxides with High SERS Sensitivity.

Zheng X, Ren F, Zhang S, Zhang X, Wu H, Zhang X, Xing Z, Qin W, Liu Y, Jiang C.

ACS Appl Mater Interfaces. 2017 Apr 26;9(16):14534-14544. doi: 10.1021/acsami.7b03839. Epub 2017 Apr 17.

PMID:
28398034
16.

Particle-on-Film Gap Plasmons on Antireflective ZnO Nanocone Arrays for Molecular-Level Surface-Enhanced Raman Scattering Sensors.

Lee Y, Lee J, Lee TK, Park J, Ha M, Kwak SK, Ko H.

ACS Appl Mater Interfaces. 2015 Dec 9;7(48):26421-9. doi: 10.1021/acsami.5b09947. Epub 2015 Nov 25.

PMID:
26575302
17.

Room-temperature sensor based on surface-enhanced Raman spectroscopy.

Yang KH, Mai FD, Yu CC, Liu YC.

Analyst. 2014 Oct 21;139(20):5164-9. doi: 10.1039/c4an01037j. Epub 2014 Aug 12.

PMID:
25112170
18.

Highly Reproducible and Sensitive SERS Substrates with Ag Inter-Nanoparticle Gaps of 5 nm Fabricated by Ultrathin Aluminum Mask Technique.

Fu Q, Zhan Z, Dou J, Zheng X, Xu R, Wu M, Lei Y.

ACS Appl Mater Interfaces. 2015 Jun 24;7(24):13322-8. doi: 10.1021/acsami.5b01524. Epub 2015 Jun 9.

PMID:
26023763
19.

In situ fabrication of 3D Ag@ZnO nanostructures for microfluidic surface-enhanced Raman scattering systems.

Xie Y, Yang S, Mao Z, Li P, Zhao C, Cohick Z, Huang PH, Huang TJ.

ACS Nano. 2014 Dec 23;8(12):12175-84. doi: 10.1021/nn503826r. Epub 2014 Nov 17.

20.

Improving SERS activity of inositol hexaphosphate capped silver nanoparticles: Fe3+ as a switcher.

Guo X, Fu Y, Fu S, Wang H, Yang T, Wen Y, Yang H.

Inorg Chem. 2014 Jul 21;53(14):7227-32. doi: 10.1021/ic5003836. Epub 2014 Jul 10.

PMID:
25010733

Supplemental Content

Support Center