Format
Sort by
Items per page

Send to

Choose Destination

Links from PubMed

Items: 1 to 20 of 104

1.

Solvent-Free Photoreduction of CO2 to CO Catalyzed by Fe-MOFs with Superior Selectivity.

Dao XY, Guo JH, Wei YP, Guo F, Liu Y, Sun WY.

Inorg Chem. 2019 Jul 1;58(13):8517-8524. doi: 10.1021/acs.inorgchem.9b00824. Epub 2019 Jun 11.

PMID:
31184876
2.

An Amine-Functionalized Iron(III) Metal-Organic Framework as Efficient Visible-Light Photocatalyst for Cr(VI) Reduction.

Shi L, Wang T, Zhang H, Chang K, Meng X, Liu H, Ye J.

Adv Sci (Weinh). 2015 Feb 9;2(3):1500006. eCollection 2015 Mar.

3.

One-Pot Synthesis of Heterobimetallic Metal-Organic Frameworks (MOFs) for Multifunctional Catalysis.

Iqbal B, Saleem M, Arshad SN, Rashid J, Hussain N, Zaheer M.

Chemistry. 2019 Jun 4. doi: 10.1002/chem.201901939. [Epub ahead of print]

PMID:
31163099
4.

Maximizing the Photocatalytic Activity of Metal-Organic Frameworks with Aminated-Functionalized Linkers: Substoichiometric Effects in MIL-125-NH2.

Chambers MB, Wang X, Ellezam L, Ersen O, Fontecave M, Sanchez C, Rozes L, Mellot-Draznieks C.

J Am Chem Soc. 2017 Jun 21;139(24):8222-8228. doi: 10.1021/jacs.7b02186. Epub 2017 Jun 7.

PMID:
28535334
5.

Highly efficient Fenton and enzyme-mimetic activities of NH2-MIL-88B(Fe) metal organic framework for methylene blue degradation.

He J, Zhang Y, Zhang X, Huang Y.

Sci Rep. 2018 Mar 26;8(1):5159. doi: 10.1038/s41598-018-23557-2.

6.

Post-Synthetic Mannich Chemistry on Metal-Organic Frameworks: System-Specific Reactivity and Functionality-Triggered Dissolution.

Amer Hamzah H, Gee WJ, Raithby PR, Teat SJ, Mahon MF, Burrows AD.

Chemistry. 2018 Aug 1;24(43):11094-11102. doi: 10.1002/chem.201801419. Epub 2018 Jun 26.

7.

Amino-Modified Fe-Terephthalate Metal-Organic Framework as an Efficient Catalyst for the Selective Oxidation of H2S.

Zheng XX, Shen LJ, Chen XP, Zheng XH, Au CT, Jiang LL.

Inorg Chem. 2018 Aug 20;57(16):10081-10089. doi: 10.1021/acs.inorgchem.8b01232. Epub 2018 Aug 6.

PMID:
30080025
8.

Iron metal-organic frameworks MIL-88B and NH2-MIL-88B for the loading and delivery of the gasotransmitter carbon monoxide.

Ma M, Noei H, Mienert B, Niesel J, Bill E, Muhler M, Fischer RA, Wang Y, Schatzschneider U, Metzler-Nolte N.

Chemistry. 2013 May 17;19(21):6785-90. doi: 10.1002/chem.201201743. Epub 2013 Mar 27.

PMID:
23536364
9.

Noble metals can have different effects on photocatalysis over metal-organic frameworks (MOFs): a case study on M/NH₂-MIL-125(Ti) (M=Pt and Au).

Sun D, Liu W, Fu Y, Fang Z, Sun F, Fu X, Zhang Y, Li Z.

Chemistry. 2014 Apr 14;20(16):4780-8. doi: 10.1002/chem.201304067. Epub 2014 Mar 18.

PMID:
24644131
10.

Creating Chemisorption Sites for Enhanced CO2 Photoreduction Activity through Alkylamine Modification of MIL-101-Cr.

Xie Y, Fang Z, Li L, Yang H, Liu TF.

ACS Appl Mater Interfaces. 2019 Jul 17. doi: 10.1021/acsami.9b09436. [Epub ahead of print]

PMID:
31276357
11.

Activated carbon/metal-organic framework nanocomposite: Preparation and photocatalytic dye degradation mathematical modeling from wastewater by least squares support vector machine.

Mahmoodi NM, Abdi J, Taghizadeh M, Taghizadeh A, Hayati B, Shekarchi AA, Vossoughi M.

J Environ Manage. 2019 Mar 1;233:660-672. doi: 10.1016/j.jenvman.2018.12.026. Epub 2019 Jan 2.

PMID:
30611099
12.

Hierarchical BiOI nanostructures supported on a metal organic framework as efficient photocatalysts for degradation of organic pollutants in water.

Jahurul Islam M, Kim HK, Amaranatha Reddy D, Kim Y, Ma R, Baek H, Kim J, Kim TK.

Dalton Trans. 2017 May 9;46(18):6013-6023. doi: 10.1039/c7dt00459a.

PMID:
28426035
13.

Thin films of metal-organic frameworks.

Zacher D, Shekhah O, Wöll C, Fischer RA.

Chem Soc Rev. 2009 May;38(5):1418-29. doi: 10.1039/b805038b. Epub 2009 Mar 9.

PMID:
19384445
14.

MIL-Ti metal-organic frameworks (MOFs) nanomaterials as superior adsorbents: Synthesis and ultrasound-aided dye adsorption from multicomponent wastewater systems.

Oveisi M, Asli MA, Mahmoodi NM.

J Hazard Mater. 2018 Apr 5;347:123-140. doi: 10.1016/j.jhazmat.2017.12.057. Epub 2017 Dec 26.

PMID:
29304451
15.

Metal-Organic Gel Material Based on UiO-66-NH2 Nanoparticles for Improved Adsorption and Conversion of Carbon Dioxide.

Liu L, Zhang J, Fang H, Chen L, Su CY.

Chem Asian J. 2016 Aug 19;11(16):2278-83. doi: 10.1002/asia.201600698. Epub 2016 Jul 26.

PMID:
27332669
16.

Iron-based metal-organic frameworks as novel platforms for catalytic ozonation of organic pollutant: Efficiency and mechanism.

Yu D, Wu M, Hu Q, Wang L, Lv C, Zhang L.

J Hazard Mater. 2019 Apr 5;367:456-464. doi: 10.1016/j.jhazmat.2018.12.108. Epub 2018 Dec 28.

PMID:
30611038
17.

Preferential solvation of metastable phases relevant to topological control within the synthesis of metal-organic frameworks.

Yang X, Clark AE.

Inorg Chem. 2014 Sep 2;53(17):8930-40. doi: 10.1021/ic5006659. Epub 2014 Aug 21.

PMID:
25144864
18.

Mixed-linker MOFs with CAU-10 structure: synthesis and gas sorption characteristics.

Reinsch H, Waitschat S, Stock N.

Dalton Trans. 2013 Apr 14;42(14):4840-7. doi: 10.1039/c3dt32355b.

PMID:
23364216
19.

Z-Scheme Photocatalytic CO2 Reduction on a Heterostructure of Oxygen-Defective ZnO/Reduced Graphene Oxide/UiO-66-NH2 under Visible Light.

Meng J, Chen Q, Lu J, Liu H.

ACS Appl Mater Interfaces. 2019 Jan 9;11(1):550-562. doi: 10.1021/acsami.8b14282. Epub 2018 Dec 21.

PMID:
30537805
20.

Enhanced photocatalytic performance of BiOBr/NH2-MIL-125(Ti) composite for dye degradation under visible light.

Zhu SR, Liu PF, Wu MK, Zhao WN, Li GC, Tao K, Yi FY, Han L.

Dalton Trans. 2016 Nov 1;45(43):17521-17529.

PMID:
27747336

Supplemental Content

Support Center