Format
Sort by
Items per page

Send to

Choose Destination

Links from PubMed

Items: 1 to 20 of 96

1.

Ultrahigh Recovery of Fracture Strength on Mismatched Fractured Amorphous Surfaces of Silicon Carbide.

Cui J, Zhang Z, Jiang H, Liu D, Zou L, Guo X, Lu Y, Parkin IP, Guo D.

ACS Nano. 2019 Jun 6. doi: 10.1021/acsnano.9b02658. [Epub ahead of print]

PMID:
31184133
2.

In situ TEM observation of rebonding on fractured silicon carbide.

Zhang Z, Cui J, Wang B, Jiang H, Chen G, Yu J, Lin C, Tang C, Hartmaier A, Zhang J, Luo J, Rosenkranz A, Jiang N, Guo D.

Nanoscale. 2018 Apr 5;10(14):6261-6269. doi: 10.1039/c8nr00341f.

PMID:
29461562
3.

Mechanical properties of silicon carbide nanowires: effect of size-dependent defect density.

Cheng G, Chang TH, Qin Q, Huang H, Zhu Y.

Nano Lett. 2014 Feb 12;14(2):754-8. doi: 10.1021/nl404058r. Epub 2014 Jan 7.

PMID:
24382314
4.

Mechanical properties of Si nanowires as revealed by in situ transmission electron microscopy and molecular dynamics simulations.

Tang DM, Ren CL, Wang MS, Wei X, Kawamoto N, Liu C, Bando Y, Mitome M, Fukata N, Golberg D.

Nano Lett. 2012 Apr 11;12(4):1898-904. doi: 10.1021/nl204282y. Epub 2012 Mar 23.

PMID:
22435880
5.

Structural relaxation of amorphous silicon carbide.

Ishimaru M, Bae IT, Hirotsu Y, Matsumura S, Sickafus KE.

Phys Rev Lett. 2002 Jul 29;89(5):055502. Epub 2002 Jul 12.

PMID:
12144449
6.

Approaching the ideal elastic strain limit in silicon nanowires.

Zhang H, Tersoff J, Xu S, Chen H, Zhang Q, Zhang K, Yang Y, Lee CS, Tu KN, Li J, Lu Y.

Sci Adv. 2016 Aug 17;2(8):e1501382. doi: 10.1126/sciadv.1501382. eCollection 2016 Aug.

7.

Quantitative fracture strength and plasticity measurements of lithiated silicon nanowires by in situ TEM tensile experiments.

Kushima A, Huang JY, Li J.

ACS Nano. 2012 Nov 27;6(11):9425-32. doi: 10.1021/nn3037623. Epub 2012 Oct 5.

PMID:
23025575
8.

Si/a-Si core/shell nanowires as nonvolatile crossbar switches.

Dong Y, Yu G, McAlpine MC, Lu W, Lieber CM.

Nano Lett. 2008 Feb;8(2):386-91. doi: 10.1021/nl073224p. Epub 2008 Jan 26.

PMID:
18220442
9.

Silicon nanowires terminated with methyl functionalities exhibit stronger Si-C bonds than equivalent 2D surfaces.

Bashouti MY, Paska Y, Puniredd SR, Stelzner T, Christiansen S, Haick H.

Phys Chem Chem Phys. 2009 May 28;11(20):3845-8. doi: 10.1039/b820559k. Epub 2009 Mar 12.

PMID:
19440610
10.
11.

Electron-beam-induced elastic-plastic transition in Si nanowires.

Dai S, Zhao J, Xie L, Cai Y, Wang N, Zhu J.

Nano Lett. 2012 May 9;12(5):2379-85. doi: 10.1021/nl3003528. Epub 2012 Apr 19.

PMID:
22494107
12.

Atomistics of the lithiation of oxidized silicon (SiOx) nanowires in reactive molecular dynamics simulations.

Jung H, Yeo BC, Lee KR, Han SS.

Phys Chem Chem Phys. 2016 Nov 30;18(47):32078-32086.

PMID:
27819103
13.

Strain engineering of core-shell silicon carbide nanowires for mechanical and piezoresistive characterizations.

Nakata S, Uesugi A, Sugano K, Rossi F, Salviati G, Lugstein A, Isono Y.

Nanotechnology. 2019 Jun 28;30(26):265702. doi: 10.1088/1361-6528/ab0d5d. Epub 2019 Mar 6.

PMID:
30840948
14.

Characterization of oxide scales thermally formed on single-crystal silicon carbide.

Chayasombat B, Kato T, Hirayama T, Tokunaga T, Sasaki K, Kuroda K.

J Electron Microsc (Tokyo). 2010 Aug;59 Suppl 1:S123-7. doi: 10.1093/jmicro/dfq039. Epub 2010 Jun 16.

PMID:
20554755
15.

Stress effects on the initial lithiation of crystalline silicon nanowires: reactive molecular dynamics simulations using ReaxFF.

Ostadhossein A, Cubuk ED, Tritsaris GA, Kaxiras E, Zhang S, van Duin AC.

Phys Chem Chem Phys. 2015 Feb 7;17(5):3832-40. doi: 10.1039/c4cp05198j. Epub 2015 Jan 5.

PMID:
25559797
16.

Origin of visible and near-infrared photoluminescence from chemically etched Si nanowires decorated with arbitrarily shaped Si nanocrystals.

Ghosh R, Giri PK, Imakita K, Fujii M.

Nanotechnology. 2014 Jan 31;25(4):045703. doi: 10.1088/0957-4484/25/4/045703. Epub 2014 Jan 6.

PMID:
24394591
17.

Fabrication of Straight Silicon Nanowires and Their Conductive Properties.

Wu S, Shao YM, Nie TX, Xu L, Jiang ZM, Yang XJ.

Nanoscale Res Lett. 2015 Dec;10(1):1025. doi: 10.1186/s11671-015-1025-x. Epub 2015 Aug 14.

18.

Structural evolutions in polymer-derived carbon-rich amorphous silicon carbide.

Wang K, Ma B, Li X, Wang Y, An L.

J Phys Chem A. 2015 Jan 29;119(4):552-8. doi: 10.1021/jp5093916. Epub 2015 Jan 20.

PMID:
25490064
19.

Low voltage nanoelectromechanical switches based on silicon carbide nanowires.

Feng XL, Matheny MH, Zorman CA, Mehregany M, Roukes ML.

Nano Lett. 2010 Aug 11;10(8):2891-6. doi: 10.1021/nl1009734.

PMID:
20698601
20.

Role of silicon nanowire diameter for alkyl (chain lengths Cā‚-Cā‚ā‚ˆ) passivation efficiency through Si-C bonds.

Bashouti MY, Garzuzi CA, de la Mata M, Arbiol J, Ristein J, Haick H, Christiansen S.

Langmuir. 2015 Mar 3;31(8):2430-7. doi: 10.1021/la5047244. Epub 2015 Feb 19.

PMID:
25668493

Supplemental Content

Support Center