Format
Sort by
Items per page

Send to

Choose Destination

Links from PubMed

Items: 1 to 20 of 99

1.

Combined Signal Amplification Using a Propagating Cascade Reaction and a Redox Cycling Reaction for Sensitive Thyroid-Stimulating Hormone Detection.

Park S, Kim J, Kim S, Kim G, Lee NS, Yoon YH, Yang H.

Anal Chem. 2019 Jun 18;91(12):7894-7901. doi: 10.1021/acs.analchem.9b01740. Epub 2019 Jun 4.

PMID:
31184125
2.

"Outer-sphere to inner-sphere" redox cycling for ultrasensitive immunosensors.

Akanda MR, Choe YL, Yang H.

Anal Chem. 2012 Jan 17;84(2):1049-55. doi: 10.1021/ac202638y. Epub 2011 Dec 30.

PMID:
22208164
3.

Electrochemical immunosensor using p-aminophenol redox cycling by hydrazine combined with a low background current.

Das J, Jo K, Lee JW, Yang H.

Anal Chem. 2007 Apr 1;79(7):2790-6. Epub 2007 Feb 21.

PMID:
17311407
4.

An electrochemical immunosensor using p-aminophenol redox cycling by NADH on a self-assembled monolayer and ferrocene-modified Au electrodes.

Kwon SJ, Yang H, Jo K, Kwak J.

Analyst. 2008 Nov;133(11):1599-604. doi: 10.1039/b806302h. Epub 2008 Aug 11.

PMID:
18936839
5.

Ultrasensitive Detection of Parathyroid Hormone through Fast Silver Deposition Induced by Enzymatic Nitroso Reduction and Redox Cycling.

Bhatia A, Nandhakumar P, Kim G, Kim J, Lee NS, Yoon YH, Yang H.

ACS Sens. 2019 Jun 28;4(6):1641-1647. doi: 10.1021/acssensors.9b00456. Epub 2019 Jun 12.

PMID:
31188576
6.

DT-Diaphorase as a Bifunctional Enzyme Label That Allows Rapid Enzymatic Amplification and Electrochemical Redox Cycling.

Kang C, Kang J, Lee NS, Yoon YH, Yang H.

Anal Chem. 2017 Aug 1;89(15):7974-7980. doi: 10.1021/acs.analchem.7b01223. Epub 2017 Jul 11.

PMID:
28696095
7.

Sensitive electrochemical detection of vaccinia virus in a solution containing a high concentration of L-ascorbic acid.

Park S, Kim J, Ock H, Dutta G, Seo J, Shin EC, Yang H.

Analyst. 2015 Aug 21;140(16):5481-7. doi: 10.1039/c5an01086a.

PMID:
26149118
8.

Electroreduction-based electrochemical-enzymatic redox cycling for the detection of cancer antigen 15-3 using graphene oxide-modified indium-tin oxide electrodes.

Park S, Singh A, Kim S, Yang H.

Anal Chem. 2014 Feb 4;86(3):1560-6. doi: 10.1021/ac403912d. Epub 2014 Jan 15.

PMID:
24428396
9.

Rapid and Sensitive Detection of Aspergillus niger Using a Single-Mediator System Combined with Redox Cycling.

Kwon J, Cho EM, Nandhakumar P, Yang SI, Yang H.

Anal Chem. 2018 Nov 20;90(22):13491-13497. doi: 10.1021/acs.analchem.8b03417. Epub 2018 Nov 7. Erratum in: Anal Chem. 2019 Feb 5;91(3):2559.

PMID:
30403470
10.

Label-free electrochemical immunosensor for ultrasensitive detection of neuron-specific enolase based on enzyme-free catalytic amplification.

Yin S, Zhao L, Ma Z.

Anal Bioanal Chem. 2018 Feb;410(4):1279-1286. doi: 10.1007/s00216-017-0767-y. Epub 2017 Dec 15.

PMID:
29247379
11.

Washing-Free Displacement Immunosensor for Cortisol in Human Serum Containing Numerous Interfering Species.

Nandhakumar P, Haque AJ, Lee NS, Yoon YH, Yang H.

Anal Chem. 2018 Sep 18;90(18):10982-10989. doi: 10.1021/acs.analchem.8b02590. Epub 2018 Aug 27.

PMID:
30148606
12.

Immunosensor Employing Stable, Solid 1-Amino-2-naphthyl Phosphate and Ammonia-Borane toward Ultrasensitive and Simple Point-of-Care Testing.

Seo J, Ha H, Park S, Haque AJ, Kim S, Joo JM, Yang H.

ACS Sens. 2017 Aug 25;2(8):1240-1246. doi: 10.1021/acssensors.7b00407. Epub 2017 Aug 14.

PMID:
28806067
13.

Hydroquinone diphosphate as a phosphatase substrate in enzymatic amplification combined with electrochemical-chemical-chemical redox cycling for the detection of E. coli O157:H7.

Akanda MR, Tamilavan V, Park S, Jo K, Hyun MH, Yang H.

Anal Chem. 2013 Feb 5;85(3):1631-6. doi: 10.1021/ac3028855. Epub 2013 Jan 17.

PMID:
23327094
14.

Highly sensitive and label-free electrochemical detection of microRNAs based on triple signal amplification of multifunctional gold nanoparticles, enzymes and redox-cycling reaction.

Liu L, Xia N, Liu H, Kang X, Liu X, Xue C, He X.

Biosens Bioelectron. 2014 Mar 15;53:399-405. doi: 10.1016/j.bios.2013.10.026. Epub 2013 Oct 23.

PMID:
24201003
15.

Redox cycling amplified electrochemical detection of DNA hybridization: application to pathogen E. coli bacterial RNA.

Walter A, Wu J, Flechsig GU, Haake DA, Wang J.

Anal Chim Acta. 2011 Mar 9;689(1):29-33. doi: 10.1016/j.aca.2011.01.014. Epub 2011 Jan 18.

16.

Sensitive and selective trypsin detection using redox cycling in the presence of L-ascorbic acid.

Park S, Yang H.

Analyst. 2014 Aug 21;139(16):4051-5. doi: 10.1039/c4an00465e.

PMID:
24955437
17.

Ultrasensitive Protease Sensors Using Selective Affinity Binding, Selective Proteolytic Reaction, and Proximity-Dependent Electrochemical Reaction.

Park S, Kim G, Seo J, Yang H.

Anal Chem. 2016 Dec 20;88(24):11995-12000. doi: 10.1021/acs.analchem.6b03255. Epub 2016 Nov 30.

PMID:
28193073
18.

A redox cycling-amplified electrochemical immunosensor for α-fetoprotein sensitive detection via polydopamine nanolabels.

Xiang H, Wang Y, Wang M, Shao Y, Jiao Y, Zhu Y.

Nanoscale. 2018 Jul 19;10(28):13572-13580. doi: 10.1039/c8nr02946f.

PMID:
29974910
19.

Nanogold-functionalized magnetic beads with redox activity for sensitive electrochemical immunoassay of thyroid-stimulating hormone.

Zhang B, Tang D, Liu B, Cui Y, Chen H, Chen G.

Anal Chim Acta. 2012 Jan 20;711:17-23. doi: 10.1016/j.aca.2011.10.049. Epub 2011 Nov 4.

PMID:
22152790
20.

An ultrasensitive enzyme-free electrochemical immunosensor based on redox cycling amplification using methylene blue.

Dutta G, Lillehoj PB.

Analyst. 2017 Sep 8;142(18):3492-3499. doi: 10.1039/c7an00789b.

Supplemental Content

Support Center