Format
Sort by
Items per page

Send to

Choose Destination

Links from PubMed

Items: 1 to 20 of 101

1.

Essential Role of σ Factor RpoF in Flagellar Biosynthesis and Flagella-Mediated Motility of Acidithiobacillus caldus.

Yang CL, Chen XK, Wang R, Lin JQ, Liu XM, Pang X, Zhang CJ, Lin JQ, Chen LX.

Front Microbiol. 2019 May 24;10:1130. doi: 10.3389/fmicb.2019.01130. eCollection 2019.

2.

The σ54-dependent two-component system regulating sulfur oxidization (Sox) system in Acidithiobacillus caldus and some chemolithotrophic bacteria.

Li LF, Fu LJ, Lin JQ, Pang X, Liu XM, Wang R, Wang ZB, Lin JQ, Chen LX.

Appl Microbiol Biotechnol. 2017 Mar;101(5):2079-2092. doi: 10.1007/s00253-016-8026-2. Epub 2016 Dec 13.

PMID:
27966049
3.

Discovery of a new subgroup of sulfur dioxygenases and characterization of sulfur dioxygenases in the sulfur metabolic network of Acidithiobacillus caldus.

Wu W, Pang X, Lin J, Liu X, Wang R, Lin J, Chen L.

PLoS One. 2017 Sep 5;12(9):e0183668. doi: 10.1371/journal.pone.0183668. eCollection 2017.

4.

Sulfur metabolism in the extreme acidophile acidithiobacillus caldus.

Mangold S, Valdés J, Holmes DS, Dopson M.

Front Microbiol. 2011 Feb 10;2:17. doi: 10.3389/fmicb.2011.00017. eCollection 2011.

5.

Acidithiobacillus caldus sulfur oxidation model based on transcriptome analysis between the wild type and sulfur oxygenase reductase defective mutant.

Chen L, Ren Y, Lin J, Liu X, Pang X, Lin J.

PLoS One. 2012;7(9):e39470. doi: 10.1371/journal.pone.0039470. Epub 2012 Sep 12.

6.

Sulfur Oxidation in the Acidophilic Autotrophic Acidithiobacillus spp.

Wang R, Lin JQ, Liu XM, Pang X, Zhang CJ, Yang CL, Gao XY, Lin CM, Li YQ, Li Y, Lin JQ, Chen LX.

Front Microbiol. 2019 Jan 10;9:3290. doi: 10.3389/fmicb.2018.03290. eCollection 2018. Review.

7.

The Two-Component System RsrS-RsrR Regulates the Tetrathionate Intermediate Pathway for Thiosulfate Oxidation in Acidithiobacillus caldus.

Wang ZB, Li YQ, Lin JQ, Pang X, Liu XM, Liu BQ, Wang R, Zhang CJ, Wu Y, Lin JQ, Chen LX.

Front Microbiol. 2016 Nov 3;7:1755. eCollection 2016.

8.

Sulfur Oxygenase Reductase (Sor) in the Moderately Thermoacidophilic Leaching Bacteria: Studies in Sulfobacillus thermosulfidooxidans and Acidithiobacillus caldus.

Janosch C, Remonsellez F, Sand W, Vera M.

Microorganisms. 2015 Oct 21;3(4):707-24. doi: 10.3390/microorganisms3040707.

9.

Diguanylate cyclase null mutant reveals that C-Di-GMP pathway regulates the motility and adherence of the extremophile bacterium Acidithiobacillus caldus.

Castro M, Deane SM, Ruiz L, Rawlings DE, Guiliani N.

PLoS One. 2015 Feb 17;10(2):e0116399. doi: 10.1371/journal.pone.0116399. eCollection 2015.

10.

Identification and characterization of an ETHE1-like sulfur dioxygenase in extremely acidophilic Acidithiobacillus spp.

Wang H, Liu S, Liu X, Li X, Wen Q, Lin J.

Appl Microbiol Biotechnol. 2014 Sep;98(17):7511-22. doi: 10.1007/s00253-014-5830-4. Epub 2014 Jun 4.

PMID:
24893664
11.

Bioleaching of arsenopyrite by mixed cultures of iron-oxidizing and sulfur-oxidizing microorganisms.

Deng S, Gu G, Wu Z, Xu X.

Chemosphere. 2017 Oct;185:403-411. doi: 10.1016/j.chemosphere.2017.07.037. Epub 2017 Jul 10.

PMID:
28710989
12.

Interactions of the metal tolerant heterotrophic microorganisms and iron oxidizing autotrophic bacteria from sulphidic mine environment during bioleaching experiments.

Jeremic S, Beškoski VP, Djokic L, Vasiljevic B, Vrvić MM, Avdalović J, Gojgić Cvijović G, Beškoski LS, Nikodinovic-Runic J.

J Environ Manage. 2016 May 1;172:151-61. doi: 10.1016/j.jenvman.2016.02.041. Epub 2016 Mar 2.

PMID:
26942859
13.

Construction of novel pJRD215-derived plasmids using chloramphenicol acetyltransferase (cat) gene as a selection marker for Acidithiobacillus caldus.

Wang R, Lin C, Lin J, Pang X, Liu X, Zhang C, Lin J, Chen L.

PLoS One. 2017 Aug 16;12(8):e0183307. doi: 10.1371/journal.pone.0183307. eCollection 2017.

14.

Gene identification and substrate regulation provide insights into sulfur accumulation during bioleaching with the psychrotolerant acidophile Acidithiobacillus ferrivorans.

Liljeqvist M, Rzhepishevska OI, Dopson M.

Appl Environ Microbiol. 2013 Feb;79(3):951-7. doi: 10.1128/AEM.02989-12. Epub 2012 Nov 26.

15.

Surface Sensing for Paenibacillus sp. NAIST15-1 Flagellar Gene Expression on Solid Medium.

Kobayashi K, Kanesaki Y, Yoshikawa H.

Appl Environ Microbiol. 2017 Jul 17;83(15). pii: e00585-17. doi: 10.1128/AEM.00585-17. Print 2017 Aug 1.

16.

Characterization of tetrathionate hydrolase from the marine acidophilic sulfur-oxidizing bacterium, Acidithiobacillus thiooxidans strain SH.

Kanao T, Onishi M, Kajitani Y, Hashimoto Y, Toge T, Kikukawa H, Kamimura K.

Biosci Biotechnol Biochem. 2018 Jan;82(1):152-160. doi: 10.1080/09168451.2017.1415128. Epub 2018 Jan 5.

PMID:
29303046
17.

Enhanced "contact mechanism" for interaction of extracellular polymeric substances with low-grade copper-bearing sulfide ore in bioleaching by moderately thermophilic Acidithiobacillus caldus.

Huang Z, Feng S, Tong Y, Yang H.

J Environ Manage. 2019 Jul 15;242:11-21. doi: 10.1016/j.jenvman.2019.04.030. Epub 2019 Apr 23.

PMID:
31026798
18.

Method development for electrotransformation of Acidithiobacillus caldus.

Chen L, Lin J, Li B, Lin J, Liu X.

J Microbiol Biotechnol. 2010 Jan;20(1):39-44.

19.

Construction of small plasmid vectors for use in genetic improvement of the extremely acidophilic Acidithiobacillus caldus.

Meng J, Wang H, Liu X, Lin J, Pang X, Lin J.

Microbiol Res. 2013 Oct 1;168(8):469-76. doi: 10.1016/j.micres.2013.04.003. Epub 2013 Apr 29.

20.

Gene Turnover Contributes to the Evolutionary Adaptation of Acidithiobacillus caldus: Insights from Comparative Genomics.

Zhang X, Liu X, He Q, Dong W, Zhang X, Fan F, Peng D, Huang W, Yin H.

Front Microbiol. 2016 Dec 6;7:1960. doi: 10.3389/fmicb.2016.01960. eCollection 2016.

Supplemental Content

Support Center