Format
Sort by
Items per page

Send to

Choose Destination

Links from PubMed

Items: 1 to 20 of 97

1.

Intensified Electrocatalytic CO2 Conversion in Pressure-Tunable CO2-Expanded Electrolytes.

Shaughnessy C, Sconyers D, Kerr T, Lee HJ, Subramaniam B, Leonard K, Blakemore J.

ChemSusChem. 2019 Jun 6. doi: 10.1002/cssc.201901107. [Epub ahead of print]

PMID:
31170315
2.

Coupled Metal/Oxide Catalysts with Tunable Product Selectivity for Electrocatalytic CO2 Reduction.

Huo S, Weng Z, Wu Z, Zhong Y, Wu Y, Fang J, Wang H.

ACS Appl Mater Interfaces. 2017 Aug 30;9(34):28519-28526. doi: 10.1021/acsami.7b07707. Epub 2017 Aug 18.

PMID:
28786653
3.

Efficient electrocatalytic CO2 reduction driven by ionic liquid buffer-like solutions.

Dupont J, Goncalves WDG, Zanatta M, Simon NM, Rutzen LM, Walsh DA.

ChemSusChem. 2019 Jul 4. doi: 10.1002/cssc.201901076. [Epub ahead of print]

PMID:
31271516
4.

Rise of nano effects in electrode during electrocatalytic CO2 conversion.

Yang KD, Lee CW, Jang JH, Ha TR, Nam KT.

Nanotechnology. 2017 Sep 1;28(35):352001. doi: 10.1088/1361-6528/aa7b0b. Epub 2017 Jun 22.

PMID:
28639561
5.

Efficient Reduction of CO2 into Formic Acid on a Lead or Tin Electrode using an Ionic Liquid Catholyte Mixture.

Zhu Q, Ma J, Kang X, Sun X, Liu H, Hu J, Liu Z, Han B.

Angew Chem Int Ed Engl. 2016 Jul 25;55(31):9012-6. doi: 10.1002/anie.201601974. Epub 2016 Jun 17.

PMID:
27311592
6.

Efficient reduction of CO2 to CO with high current density using in situ or ex situ prepared Bi-based materials.

Medina-Ramos J, DiMeglio JL, Rosenthal J.

J Am Chem Soc. 2014 Jun 11;136(23):8361-7. doi: 10.1021/ja501923g. Epub 2014 May 27.

7.

Electrocatalytic CO2 Reduction with a Homogeneous Catalyst in Ionic Liquid: High Catalytic Activity at Low Overpotential.

Grills DC, Matsubara Y, Kuwahara Y, Golisz SR, Kurtz DA, Mello BA.

J Phys Chem Lett. 2014 Jun 5;5(11):2033-8. doi: 10.1021/jz500759x. Epub 2014 May 28.

PMID:
26273891
8.

Tunable Molecular-Scale Materials for Catalyzing the Low-Overpotential Electrochemical Conversion of CO2.

Rosen BA, Hod I.

Adv Mater. 2018 Oct;30(41):e1706238. doi: 10.1002/adma.201706238. Epub 2018 Apr 25. Review.

PMID:
29693733
9.

Electrolytic CO2 Reduction in a Flow Cell.

Weekes DM, Salvatore DA, Reyes A, Huang A, Berlinguette CP.

Acc Chem Res. 2018 Apr 17;51(4):910-918. doi: 10.1021/acs.accounts.8b00010. Epub 2018 Mar 23.

PMID:
29569896
10.

Selective conversion of CO2 to CO with high efficiency using an inexpensive bismuth-based electrocatalyst.

DiMeglio JL, Rosenthal J.

J Am Chem Soc. 2013 Jun 19;135(24):8798-801. doi: 10.1021/ja4033549. Epub 2013 Jun 4.

11.

Tailoring the Edge Structure of Molybdenum Disulfide toward Electrocatalytic Reduction of Carbon Dioxide.

Abbasi P, Asadi M, Liu C, Sharifi-Asl S, Sayahpour B, Behranginia A, Zapol P, Shahbazian-Yassar R, Curtiss LA, Salehi-Khojin A.

ACS Nano. 2017 Jan 24;11(1):453-460. doi: 10.1021/acsnano.6b06392. Epub 2016 Dec 19.

PMID:
27991762
12.

Catholyte-Free Electrocatalytic CO2 Reduction to Formate.

Lee W, Kim YE, Youn MH, Jeong SK, Park KT.

Angew Chem Int Ed Engl. 2018 Jun 4;57(23):6883-6887. doi: 10.1002/anie.201803501. Epub 2018 May 8.

PMID:
29660257
13.

Metal-Organic Frameworks and Their Derived Materials as Electrocatalysts and Photocatalysts for CO2 Reduction: Progress, Challenges, and Perspectives.

Zhang H, Li J, Tan Q, Lu L, Wang Z, Wu G.

Chemistry. 2018 Dec 10;24(69):18137-18157. doi: 10.1002/chem.201803083. Epub 2018 Nov 19. Review.

PMID:
30160808
14.

Selective and Efficient Reduction of Carbon Dioxide to Carbon Monoxide on Oxide-Derived Nanostructured Silver Electrocatalysts.

Ma M, TrzeĊ›niewski BJ, Xie J, Smith WA.

Angew Chem Int Ed Engl. 2016 Aug 8;55(33):9748-52. doi: 10.1002/anie.201604654. Epub 2016 Jul 5.

PMID:
27377237
15.

Efficient electrochemical CO2 conversion powered by renewable energy.

Kauffman DR, Thakkar J, Siva R, Matranga C, Ohodnicki PR, Zeng C, Jin R.

ACS Appl Mater Interfaces. 2015 Jul 22;7(28):15626-32. doi: 10.1021/acsami.5b04393. Epub 2015 Jul 10.

PMID:
26121278
16.

Identification of a new substrate effect that enhances the electrocatalytic activity of dendritic tin in CO2 reduction.

Zhang Y, Zhang X, Bond AM, Zhang J.

Phys Chem Chem Phys. 2018 Feb 21;20(8):5936-5941. doi: 10.1039/c7cp07723h.

PMID:
29423495
17.

Ligament size-dependent electrocatalytic activity of nanoporous Ag network for CO2 reduction.

Yang W, Ma W, Zhang Z, Zhao C.

Faraday Discuss. 2018 Oct 1;210(0):289-299. doi: 10.1039/c8fd00056e.

PMID:
29974912
18.

Visible-light photoredox catalysis: selective reduction of carbon dioxide to carbon monoxide by a nickel N-heterocyclic carbene-isoquinoline complex.

Thoi VS, Kornienko N, Margarit CG, Yang P, Chang CJ.

J Am Chem Soc. 2013 Sep 25;135(38):14413-24. doi: 10.1021/ja4074003. Epub 2013 Sep 13.

PMID:
24033186
19.

Single-Atom Catalysis toward Efficient CO2 Conversion to CO and Formate Products.

Su X, Yang XF, Huang Y, Liu B, Zhang T.

Acc Chem Res. 2019 Mar 19;52(3):656-664. doi: 10.1021/acs.accounts.8b00478. Epub 2018 Dec 4.

PMID:
30512920
20.

G-quadruplex Nanowires To Direct the Efficiency and Selectivity of Electrocatalytic CO2 Reduction.

He L, Sun X, Zhang H, Shao F.

Angew Chem Int Ed Engl. 2018 Sep 17;57(38):12453-12457. doi: 10.1002/anie.201806652. Epub 2018 Aug 21.

PMID:
30033668

Supplemental Content

Support Center