Format
Sort by
Items per page

Send to

Choose Destination

Links from PubMed

Items: 1 to 20 of 87

1.

Artificial Intelligence in Musculoskeletal Imaging: Current Status and Future Directions.

Gyftopoulos S, Lin D, Knoll F, Doshi AM, Rodrigues TC, Recht MP.

AJR Am J Roentgenol. 2019 Jun 5:1-8. doi: 10.2214/AJR.19.21117. [Epub ahead of print]

PMID:
31166761
2.

Artificial intelligence in medical imaging of the liver.

Zhou LQ, Wang JY, Yu SY, Wu GG, Wei Q, Deng YB, Wu XL, Cui XW, Dietrich CF.

World J Gastroenterol. 2019 Feb 14;25(6):672-682. doi: 10.3748/wjg.v25.i6.672. Review.

3.

Artificial Intelligence in Breast Imaging: Potentials and Limitations.

Mendelson EB.

AJR Am J Roentgenol. 2019 Feb;212(2):293-299. doi: 10.2214/AJR.18.20532. Epub 2018 Nov 13.

PMID:
30422715
4.

Automation, machine learning, and artificial intelligence in echocardiography: A brave new world.

Gandhi S, Mosleh W, Shen J, Chow CM.

Echocardiography. 2018 Sep;35(9):1402-1418. doi: 10.1111/echo.14086. Epub 2018 Jul 5. Review.

PMID:
29974498
5.

Assessing the Role of Artificial Intelligence (AI) in Clinical Oncology: Utility of Machine Learning in Radiotherapy Target Volume Delineation.

Boon IS, Au Yong TPT, Boon CS.

Medicines (Basel). 2018 Dec 11;5(4). pii: E131. doi: 10.3390/medicines5040131. Review.

6.

The Doctor-Patient Relationship With Artificial Intelligence.

Aminololama-Shakeri S, López JE.

AJR Am J Roentgenol. 2019 Feb;212(2):308-310. doi: 10.2214/AJR.18.20509. Epub 2018 Dec 12.

PMID:
30540210
7.

Artificial Intelligence and Machine Learning in Radiology: Opportunities, Challenges, Pitfalls, and Criteria for Success.

Thrall JH, Li X, Li Q, Cruz C, Do S, Dreyer K, Brink J.

J Am Coll Radiol. 2018 Mar;15(3 Pt B):504-508. doi: 10.1016/j.jacr.2017.12.026. Epub 2018 Feb 4.

PMID:
29402533
8.

Artificial Intelligence in Musculoskeletal Imaging: Review of Current Literature, Challenges, and Trends.

Hirschmann A, Cyriac J, Stieltjes B, Kober T, Richiardi J, Omoumi P.

Semin Musculoskelet Radiol. 2019 Jun;23(3):304-311. doi: 10.1055/s-0039-1684024. Epub 2019 Jun 4.

PMID:
31163504
9.

Artificial intelligence in medical imaging: threat or opportunity? Radiologists again at the forefront of innovation in medicine.

Pesapane F, Codari M, Sardanelli F.

Eur Radiol Exp. 2018 Oct 24;2(1):35. doi: 10.1186/s41747-018-0061-6. Review.

10.

Deep into the Brain: Artificial Intelligence in Stroke Imaging.

Lee EJ, Kim YH, Kim N, Kang DW.

J Stroke. 2017 Sep;19(3):277-285. doi: 10.5853/jos.2017.02054. Epub 2017 Sep 29. Review.

11.

Demystification of AI-driven medical image interpretation: past, present and future.

Savadjiev P, Chong J, Dohan A, Vakalopoulou M, Reinhold C, Paragios N, Gallix B.

Eur Radiol. 2019 Mar;29(3):1616-1624. doi: 10.1007/s00330-018-5674-x. Epub 2018 Aug 13. Review.

PMID:
30105410
12.

Artificial Intelligence for Breast MRI in 2008-2018: A Systematic Mapping Review.

Codari M, Schiaffino S, Sardanelli F, Trimboli RM.

AJR Am J Roentgenol. 2019 Feb;212(2):280-292. doi: 10.2214/AJR.18.20389. Epub 2019 Jan 2.

PMID:
30601029
13.

Artificial intelligence in gastrointestinal endoscopy: The future is almost here.

Alagappan M, Brown JRG, Mori Y, Berzin TM.

World J Gastrointest Endosc. 2018 Oct 16;10(10):239-249. doi: 10.4253/wjge.v10.i10.239. Review.

14.

Canadian Association of Radiologists White Paper on Artificial Intelligence in Radiology.

Tang A, Tam R, Cadrin-Chênevert A, Guest W, Chong J, Barfett J, Chepelev L, Cairns R, Mitchell JR, Cicero MD, Poudrette MG, Jaremko JL, Reinhold C, Gallix B, Gray B, Geis R; Canadian Association of Radiologists (CAR) Artificial Intelligence Working Group.

Can Assoc Radiol J. 2018 May;69(2):120-135. doi: 10.1016/j.carj.2018.02.002. Epub 2018 Apr 11. Review.

15.

Rapid and accurate intraoperative pathological diagnosis by artificial intelligence with deep learning technology.

Zhang J, Song Y, Xia F, Zhu C, Zhang Y, Song W, Xu J, Ma X.

Med Hypotheses. 2017 Sep;107:98-99. doi: 10.1016/j.mehy.2017.08.021. Epub 2017 Sep 1.

PMID:
28915974
16.

A primer in artificial intelligence in cardiovascular medicine.

Benjamins JW, Hendriks T, Knuuti J, Juarez-Orozco LE, van der Harst P.

Neth Heart J. 2019 May 20. doi: 10.1007/s12471-019-1286-6. [Epub ahead of print] Review.

PMID:
31111458
17.

Artificial intelligence and echocardiography.

Alsharqi M, Woodward WJ, Mumith JA, Markham DC, Upton R, Leeson P.

Echo Res Pract. 2018 Dec 1;5(4):R115-R125. doi: 10.1530/ERP-18-0056. Review.

18.

Artificial Intelligence in Cardiovascular Imaging: JACC State-of-the-Art Review.

Dey D, Slomka PJ, Leeson P, Comaniciu D, Shrestha S, Sengupta PP, Marwick TH.

J Am Coll Cardiol. 2019 Mar 26;73(11):1317-1335. doi: 10.1016/j.jacc.2018.12.054. Review.

PMID:
30898208
19.

Artificial Intelligence, Machine Learning, Deep Learning, and Cognitive Computing: What Do These Terms Mean and How Will They Impact Health Care?

Bini SA.

J Arthroplasty. 2018 Aug;33(8):2358-2361. doi: 10.1016/j.arth.2018.02.067. Epub 2018 Feb 27.

PMID:
29656964
20.

Artificial intelligence in breast ultrasound.

Wu GG, Zhou LQ, Xu JW, Wang JY, Wei Q, Deng YB, Cui XW, Dietrich CF.

World J Radiol. 2019 Feb 28;11(2):19-26. doi: 10.4329/wjr.v11.i2.19. Review.

Supplemental Content

Support Center