Format
Sort by
Items per page

Send to

Choose Destination

Links from PubMed

Items: 1 to 20 of 101

1.

Enzyme-free optical DNA mapping of the human genome using competitive binding.

Müller V, Dvirnas A, Andersson J, Singh V, Kk S, Johansson P, Ebenstein Y, Ambjörnsson T, Westerlund F.

Nucleic Acids Res. 2019 Sep 5;47(15):e89. doi: 10.1093/nar/gkz489.

2.

A single-step competitive binding assay for mapping of single DNA molecules.

Nyberg LK, Persson F, Berg J, Bergström J, Fransson E, Olsson L, Persson M, Stålnacke A, Wigenius J, Tegenfeldt JO, Westerlund F.

Biochem Biophys Res Commun. 2012 Jan 6;417(1):404-8. doi: 10.1016/j.bbrc.2011.11.128. Epub 2011 Dec 7.

PMID:
22166208
3.

Competitive binding-based optical DNA mapping for fast identification of bacteria--multi-ligand transfer matrix theory and experimental applications on Escherichia coli.

Nilsson AN, Emilsson G, Nyberg LK, Noble C, Stadler LS, Fritzsche J, Moore ER, Tegenfeldt JO, Ambjörnsson T, Westerlund F.

Nucleic Acids Res. 2014 Sep;42(15):e118. doi: 10.1093/nar/gku556. Epub 2014 Jul 10.

4.

Optical mapping of DNA: single-molecule-based methods for mapping genomes.

Neely RK, Deen J, Hofkens J.

Biopolymers. 2011 May;95(5):298-311. doi: 10.1002/bip.21579. Epub 2011 Jan 4. Review. Erratum in: Biopolymers. 2011 Sep;95(9):651.

PMID:
21207457
5.

BioNano genome mapping of individual chromosomes supports physical mapping and sequence assembly in complex plant genomes.

Staňková H, Hastie AR, Chan S, Vrána J, Tulpová Z, Kubaláková M, Visendi P, Hayashi S, Luo M, Batley J, Edwards D, Doležel J, Šimková H.

Plant Biotechnol J. 2016 Jul;14(7):1523-31. doi: 10.1111/pbi.12513. Epub 2016 Jan 23.

6.

Toward single-molecule optical mapping of the epigenome.

Levy-Sakin M, Grunwald A, Kim S, Gassman NR, Gottfried A, Antelman J, Kim Y, Ho SO, Samuel R, Michalet X, Lin RR, Dertinger T, Kim AS, Chung S, Colyer RA, Weinhold E, Weiss S, Ebenstein Y.

ACS Nano. 2014 Jan 28;8(1):14-26. doi: 10.1021/nn4050694. Epub 2013 Dec 20.

7.

Single-molecule optical genome mapping of a human HapMap and a colorectal cancer cell line.

Teo AS, Verzotto D, Yao F, Nagarajan N, Hillmer AM.

Gigascience. 2015 Dec 29;4:65. doi: 10.1186/s13742-015-0106-1. eCollection 2015.

8.

Rapid whole genome optical mapping of Plasmodium falciparum.

Riley MC, Kirkup BC Jr, Johnson JD, Lesho EP, Ockenhouse CF.

Malar J. 2011 Aug 26;10:252. doi: 10.1186/1475-2875-10-252.

9.

Computational methods for optical mapping.

Mendelowitz L, Pop M.

Gigascience. 2014 Dec 30;3(1):33. doi: 10.1186/2047-217X-3-33. eCollection 2014. Review.

10.

Whole Genome Profiling provides a robust framework for physical mapping and sequencing in the highly complex and repetitive wheat genome.

Philippe R, Choulet F, Paux E, van Oeveren J, Tang J, Wittenberg AH, Janssen A, van Eijk MJ, Stormo K, Alberti A, Wincker P, Akhunov E, van der Vossen E, Feuillet C.

BMC Genomics. 2012 Jan 30;13:47. doi: 10.1186/1471-2164-13-47.

11.

Genome mapping on nanochannel arrays for structural variation analysis and sequence assembly.

Lam ET, Hastie A, Lin C, Ehrlich D, Das SK, Austin MD, Deshpande P, Cao H, Nagarajan N, Xiao M, Kwok PY.

Nat Biotechnol. 2012 Aug;30(8):771-6.

12.

Optical DNA mapping in nanofluidic devices: principles and applications.

Müller V, Westerlund F.

Lab Chip. 2017 Feb 14;17(4):579-590. doi: 10.1039/c6lc01439a. Review.

PMID:
28098301
13.

Generating a high-confidence reference genome map of the Greater Duckweed by integration of cytogenomic, optical mapping, and Oxford Nanopore technologies.

Hoang PNT, Michael TP, Gilbert S, Chu P, Motley ST, Appenroth KJ, Schubert I, Lam E.

Plant J. 2018 Nov;96(3):670-684. doi: 10.1111/tpj.14049. Epub 2018 Sep 28.

PMID:
30054939
14.

Optical mapping in plant comparative genomics.

Tang H, Lyons E, Town CD.

Gigascience. 2015 Feb 10;4:3. doi: 10.1186/s13742-015-0044-y. eCollection 2015. Review.

15.

Single-molecule, antibody-free fluorescent visualisation of replication tracts along barcoded DNA molecules.

De Carli F, Gaggioli V, Millot GA, Hyrien O.

Int J Dev Biol. 2016;60(7-8-9):297-304.

16.

Super-Resolution Genome Mapping in Silicon Nanochannels.

Jeffet J, Kobo A, Su T, Grunwald A, Green O, Nilsson AN, Eisenberg E, Ambjörnsson T, Westerlund F, Weinhold E, Shabat D, Purohit PK, Ebenstein Y.

ACS Nano. 2016 Nov 22;10(11):9823-9830. Epub 2016 Sep 23.

PMID:
27646634
17.

Rapid genome mapping in nanochannel arrays for highly complete and accurate de novo sequence assembly of the complex Aegilops tauschii genome.

Hastie AR, Dong L, Smith A, Finklestein J, Lam ET, Huo N, Cao H, Kwok PY, Deal KR, Dvorak J, Luo MC, Gu Y, Xiao M.

PLoS One. 2013;8(2):e55864. doi: 10.1371/journal.pone.0055864. Epub 2013 Feb 6.

18.

Sequence-specific DNA nicking endonucleases.

Xu SY.

Biomol Concepts. 2015 Aug;6(4):253-67. doi: 10.1515/bmc-2015-0016. Review.

PMID:
26352356
19.

Using comparative genomics to reorder the human genome sequence into a virtual sheep genome.

Dalrymple BP, Kirkness EF, Nefedov M, McWilliam S, Ratnakumar A, Barris W, Zhao S, Shetty J, Maddox JF, O'Grady M, Nicholas F, Crawford AM, Smith T, de Jong PJ, McEwan J, Oddy VH, Cockett NE; International Sheep Genomics Consortium.

Genome Biol. 2007;8(7):R152.

20.

Sequencing of 6.7 Mb of the melon genome using a BAC pooling strategy.

González VM, Benjak A, Hénaff EM, Mir G, Casacuberta JM, Garcia-Mas J, Puigdomènech P.

BMC Plant Biol. 2010 Nov 12;10:246. doi: 10.1186/1471-2229-10-246.

Supplemental Content

Support Center