Format
Sort by
Items per page

Send to

Choose Destination

Links from PubMed

Items: 1 to 20 of 100

1.

A H-bond strategy to develop acid-resistant photoswitchable rhodamine spirolactams for super-resolution single-molecule localization microscopy.

Qi Q, Chi W, Li Y, Qiao Q, Chen J, Miao L, Zhang Y, Li J, Ji W, Xu T, Liu X, Yoon J, Xu Z.

Chem Sci. 2019 Apr 4;10(18):4914-4922. doi: 10.1039/c9sc01284b. eCollection 2019 May 14.

2.

Strategy to Lengthen the On-Time of Photochromic Rhodamine Spirolactam for Super-resolution Photoactivated Localization Microscopy.

Ye Z, Yu H, Yang W, Zheng Y, Li N, Bian H, Wang Z, Liu Q, Song Y, Zhang M, Xiao Y.

J Am Chem Soc. 2019 Apr 24;141(16):6527-6536. doi: 10.1021/jacs.8b11369. Epub 2019 Apr 12.

PMID:
30938994
3.

Small-molecule labeling of live cell surfaces for three-dimensional super-resolution microscopy.

Lee MK, Rai P, Williams J, Twieg RJ, Moerner WE.

J Am Chem Soc. 2014 Oct 8;136(40):14003-6. doi: 10.1021/ja508028h. Epub 2014 Sep 24.

4.

Spectrally Resolved and Functional Super-resolution Microscopy via Ultrahigh-Throughput Single-Molecule Spectroscopy.

Yan R, Moon S, Kenny SJ, Xu K.

Acc Chem Res. 2018 Mar 20;51(3):697-705. doi: 10.1021/acs.accounts.7b00545. Epub 2018 Feb 14.

PMID:
29443498
5.

Synthesis of a Far-Red Photoactivatable Silicon-Containing Rhodamine for Super-Resolution Microscopy.

Grimm JB, Klein T, Kopek BG, Shtengel G, Hess HF, Sauer M, Lavis LD.

Angew Chem Int Ed Engl. 2016 Jan 26;55(5):1723-7. doi: 10.1002/anie.201509649. Epub 2015 Dec 11.

6.

Single-molecule localization microscopy-near-molecular spatial resolution in light microscopy with photoswitchable fluorophores.

Fürstenberg A, Heilemann M.

Phys Chem Chem Phys. 2013 Sep 28;15(36):14919-30. doi: 10.1039/c3cp52289j. Review.

PMID:
23925641
7.

Photostable and photoswitching fluorescent dyes for super-resolution imaging.

Minoshima M, Kikuchi K.

J Biol Inorg Chem. 2017 Jul;22(5):639-652. doi: 10.1007/s00775-016-1435-y. Epub 2017 Jan 12. Review.

PMID:
28083655
8.

Quantitative super-resolution single molecule microscopy dataset of YFP-tagged growth factor receptors.

Lukeš T, Pospíšil J, Fliegel K, Lasser T, Hagen GM.

Gigascience. 2018 Mar 1;7(3):1-10. doi: 10.1093/gigascience/giy002.

9.

Photoswitchable fluorophores for single-molecule localization microscopy.

Finan K, Flottmann B, Heilemann M.

Methods Mol Biol. 2013;950:131-51. doi: 10.1007/978-1-62703-137-0_9.

PMID:
23086874
10.

In situ preparation of highly fluorescent dyes upon photoirradiation.

Uno K, Niikura H, Morimoto M, Ishibashi Y, Miyasaka H, Irie M.

J Am Chem Soc. 2011 Aug 31;133(34):13558-64. doi: 10.1021/ja204583e. Epub 2011 Aug 5.

PMID:
21819048
11.

An acid catalyzed reversible ring-opening/ring-closure reaction involving a cyano-rhodamine spirolactam.

Li H, Guan H, Duan X, Hu J, Wang G, Wang Q.

Org Biomol Chem. 2013 Mar 21;11(11):1805-9. doi: 10.1039/c3ob27356c. Epub 2013 Feb 5.

PMID:
23381503
12.

Superresolution microscopy with novel BODIPY-based fluorophores.

Bittel AM, Saldivar IS, Dolman NJ, Nan X, Gibbs SL.

PLoS One. 2018 Oct 26;13(10):e0206104. doi: 10.1371/journal.pone.0206104. eCollection 2018.

13.

Tuning the pKa of Fluorescent Rhodamine pH Probes through Substituent Effects.

Stratton SG, Taumoefolau GH, Purnell GE, Rasooly M, Czaplyski WL, Harbron EJ.

Chemistry. 2017 Oct 9;23(56):14064-14072. doi: 10.1002/chem.201703176. Epub 2017 Sep 14.

PMID:
28836708
14.

Single-wavelength-controlled in situ dynamic super-resolution fluorescence imaging for block copolymer nanostructures via blue-light-switchable FRAP.

Gong WL, Yan J, Zhao LX, Li C, Huang ZL, Tang BZ, Zhu MQ.

Photochem Photobiol Sci. 2016 Nov 2;15(11):1433-1441.

PMID:
27739551
15.

Rhodamine-Derived Fluorescent Dye with Inherent Blinking Behavior for Super-Resolution Imaging.

Macdonald PJ, Gayda S, Haack RA, Ruan Q, Himmelsbach RJ, Tetin SY.

Anal Chem. 2018 Aug 7;90(15):9165-9173. doi: 10.1021/acs.analchem.8b01645. Epub 2018 Jul 9.

PMID:
29938506
16.

Spontaneously Blinking Fluorescent Protein for Simple Single Laser Super-Resolution Live Cell Imaging.

Arai Y, Takauchi H, Ogami Y, Fujiwara S, Nakano M, Matsuda T, Nagai T.

ACS Chem Biol. 2018 Aug 17;13(8):1938-1943. doi: 10.1021/acschembio.8b00200. Epub 2018 Jul 10.

PMID:
29963852
17.

General Sensitive Detecting Strategy of Ions through Plasmonic Resonance Energy Transfer from Gold Nanoparticles to Rhodamine Spirolactam.

Gao MX, Zou HY, Li YF, Huang CZ.

Anal Chem. 2017 Feb 7;89(3):1808-1814. doi: 10.1021/acs.analchem.6b04124. Epub 2017 Jan 23.

PMID:
28208282
18.

Ratiometric Near-Infrared Fluorescent Probes Based On Through-Bond Energy Transfer and π-Conjugation Modulation between Tetraphenylethene and Hemicyanine Moieties for Sensitive Detection of pH Changes in Live Cells.

Wang J, Xia S, Bi J, Fang M, Mazi W, Zhang Y, Conner N, Luo FT, Lu HP, Liu H.

Bioconjug Chem. 2018 Apr 18;29(4):1406-1418. doi: 10.1021/acs.bioconjchem.8b00111. Epub 2018 Mar 20.

19.

Rhodamine spiroamides for multicolor single-molecule switching fluorescent nanoscopy.

Belov VN, Bossi ML, Fölling J, Boyarskiy VP, Hell SW.

Chemistry. 2009 Oct 19;15(41):10762-76. doi: 10.1002/chem.200901333.

PMID:
19760719
20.

Super blinking and biocompatible nanoprobes based on dye doped BSA nanoparticles for super resolution imaging.

Zong S, Pan F, Zhang R, Chen C, Wang Z, Cui Y.

Nanotechnology. 2019 Feb 8;30(6):065701. doi: 10.1088/1361-6528/aaf03b.

PMID:
30523996

Supplemental Content

Support Center