Format
Sort by
Items per page

Send to

Choose Destination

Links from PubMed

Items: 1 to 20 of 97

1.

Tetravalent biepitopic targeting enables intrinsic antibody agonism of tumor necrosis factor receptor superfamily members.

Yang Y, Yeh SH, Madireddi S, Matochko WL, Gu C, Pacheco Sanchez P, Ultsch M, De Leon Boenig G, Harris SF, Leonard B, Scales SJ, Zhu JW, Christensen E, Hang JQ, Brezski RJ, Marsters S, Ashkenazi A, Sukumaran S, Chiu H, Cubas R, Kim JM, Lazar GA.

MAbs. 2019 Aug/Sep;11(6):996-1011. doi: 10.1080/19420862.2019.1625662. Epub 2019 Jun 20.

PMID:
31156033
2.

Fc Engineering Approaches to Enhance the Agonism and Effector Functions of an Anti-OX40 Antibody.

Zhang D, Goldberg MV, Chiu ML.

J Biol Chem. 2016 Dec 30;291(53):27134-27146. doi: 10.1074/jbc.M116.757773. Epub 2016 Nov 17.

3.

FcγRII-binding Centyrins mediate agonism and antibody-dependent cellular phagocytosis when fused to an anti-OX40 antibody.

Zhang D, Whitaker B, Derebe MG, Chiu ML.

MAbs. 2018 Apr;10(3):463-475. doi: 10.1080/19420862.2018.1424611. Epub 2018 Jan 29.

4.

Functional optimization of agonistic antibodies to OX40 receptor with novel Fc mutations to promote antibody multimerization.

Zhang D, Armstrong AA, Tam SH, McCarthy SG, Luo J, Gilliland GL, Chiu ML.

MAbs. 2017 Oct;9(7):1129-1142. doi: 10.1080/19420862.2017.1358838. Epub 2017 Jul 31.

5.

Agonist redirected checkpoint, PD1-Fc-OX40L, for cancer immunotherapy.

Fromm G, de Silva S, Johannes K, Patel A, Hornblower JC, Schreiber TH.

J Immunother Cancer. 2018 Dec 18;6(1):149. doi: 10.1186/s40425-018-0454-3.

6.

Ligand-Blocking and Membrane-Proximal Domain Targeting Anti-OX40 Antibodies Mediate Potent T Cell-Stimulatory and Anti-Tumor Activity.

Zhang P, Tu GH, Wei J, Santiago P, Larrabee LR, Liao-Chan S, Mistry T, Chu ML, Sai T, Lindquist K, Long H, Chaparro-Riggers J, Salek-Ardakani S, Yeung YA.

Cell Rep. 2019 Jun 11;27(11):3117-3123.e5. doi: 10.1016/j.celrep.2019.05.027.

7.

Costimulation via the tumor-necrosis factor receptor superfamily couples TCR signal strength to the thymic differentiation of regulatory T cells.

Mahmud SA, Manlove LS, Schmitz HM, Xing Y, Wang Y, Owen DL, Schenkel JM, Boomer JS, Green JM, Yagita H, Chi H, Hogquist KA, Farrar MA.

Nat Immunol. 2014 May;15(5):473-81. doi: 10.1038/ni.2849. Epub 2014 Mar 16.

8.

Principles of antibody-mediated TNF receptor activation.

Wajant H.

Cell Death Differ. 2015 Nov;22(11):1727-41. doi: 10.1038/cdd.2015.109. Epub 2015 Aug 21. Review.

9.

Small-molecule modulators of the OX40-OX40 ligand co-stimulatory protein-protein interaction.

Song Y, Margolles-Clark E, Bayer A, Buchwald P.

Br J Pharmacol. 2014 Nov;171(21):4955-69. doi: 10.1111/bph.12819.

10.

TNF optimally activatives regulatory T cells by inducing TNF receptor superfamily members TNFR2, 4-1BB and OX40.

Hamano R, Huang J, Yoshimura T, Oppenheim JJ, Chen X.

Eur J Immunol. 2011 Jul;41(7):2010-20. doi: 10.1002/eji.201041205.

11.

The immunobiology of CD27 and OX40 and their potential as targets for cancer immunotherapy.

Buchan SL, Rogel A, Al-Shamkhani A.

Blood. 2018 Jan 4;131(1):39-48. doi: 10.1182/blood-2017-07-741025. Epub 2017 Nov 8. Review.

12.

The tetravalent anti-DR5 antibody without cross-linking direct induces apoptosis of cancer cells.

Liu F, Si Y, Liu G, Li S, Zhang J, Ma Y.

Biomed Pharmacother. 2015 Mar;70:41-5. doi: 10.1016/j.biopha.2014.12.024. Epub 2014 Dec 24.

PMID:
25776477
13.

Costimulation through OX40 is crucial for induction of an alloreactive human T-cell response.

Ukyo N, Hori T, Yanagita S, Ishikawa T, Uchiyama T.

Immunology. 2003 Jun;109(2):226-31.

14.

HERA-GITRL activates T cells and promotes anti-tumor efficacy independent of FcγR-binding functionality.

Richards DM, Marschall V, Billian-Frey K, Heinonen K, Merz C, Redondo Müller M, Sefrin JP, Schröder M, Sykora J, Fricke H, Hill O, Gieffers C, Thiemann M.

J Immunother Cancer. 2019 Jul 19;7(1):191. doi: 10.1186/s40425-019-0671-4.

15.
16.

PLGA-nanoparticle mediated delivery of anti-OX40 monoclonal antibody enhances anti-tumor cytotoxic T cell responses.

Chen M, Ouyang H, Zhou S, Li J, Ye Y.

Cell Immunol. 2014 Feb;287(2):91-9. doi: 10.1016/j.cellimm.2014.01.003. Epub 2014 Jan 13.

PMID:
24487032
17.
18.

The OX-40 receptor provides a potent co-stimulatory signal capable of inducing encephalitogenicity in myelin-specific CD4+ T cells.

Kaleeba JA, Offner H, Vandenbark AA, Lublinski A, Weinberg AD.

Int Immunol. 1998 Apr;10(4):453-61.

PMID:
9620601
19.

Harnessing co-stimulatory TNF receptors for cancer immunotherapy: Current approaches and future opportunities.

Waight JD, Gombos RB, Wilson NS.

Hum Antibodies. 2017;25(3-4):87-109. doi: 10.3233/HAB-160308. Review.

PMID:
28085016
20.

OX40 Agonists and Combination Immunotherapy: Putting the Pedal to the Metal.

Linch SN, McNamara MJ, Redmond WL.

Front Oncol. 2015 Feb 16;5:34. doi: 10.3389/fonc.2015.00034. eCollection 2015. Review.

Supplemental Content

Support Center