Format
Sort by
Items per page

Send to

Choose Destination

Links from PubMed

Items: 1 to 20 of 94

1.

When fat goes down, prostate cancer is on the ropes.

Zadra G, Loda M.

Mol Cell Oncol. 2019 Apr 16;6(3):1595308. doi: 10.1080/23723556.2019.1595308. eCollection 2019.

PMID:
31131311
2.

Lipid Uptake Is an Androgen-Enhanced Lipid Supply Pathway Associated with Prostate Cancer Disease Progression and Bone Metastasis.

Tousignant KD, Rockstroh A, Taherian Fard A, Lehman ML, Wang C, McPherson SJ, Philp LK, Bartonicek N, Dinger ME, Nelson CC, Sadowski MC.

Mol Cancer Res. 2019 May;17(5):1166-1179. doi: 10.1158/1541-7786.MCR-18-1147. Epub 2019 Feb 26.

PMID:
30808729
3.

Abrogation of de novo lipogenesis by stearoyl-CoA desaturase 1 inhibition interferes with oncogenic signaling and blocks prostate cancer progression in mice.

Fritz V, Benfodda Z, Rodier G, Henriquet C, Iborra F, Avanc├Ęs C, Allory Y, de la Taille A, Culine S, Blancou H, Cristol JP, Michel F, Sardet C, Fajas L.

Mol Cancer Ther. 2010 Jun;9(6):1740-54. doi: 10.1158/1535-7163.MCT-09-1064. Epub 2010 Jun 8.

4.

Androgen stimulates glycolysis for de novo lipid synthesis by increasing the activities of hexokinase 2 and 6-phosphofructo-2-kinase/fructose-2,6-bisphosphatase 2 in prostate cancer cells.

Moon JS, Jin WJ, Kwak JH, Kim HJ, Yun MJ, Kim JW, Park SW, Kim KS.

Biochem J. 2011 Jan 1;433(1):225-33. doi: 10.1042/BJ20101104.

PMID:
20958264
5.

Targeting ACLY sensitizes castration-resistant prostate cancer cells to AR antagonism by impinging on an ACLY-AMPK-AR feedback mechanism.

Shah S, Carriveau WJ, Li J, Campbell SL, Kopinski PK, Lim HW, Daurio N, Trefely S, Won KJ, Wallace DC, Koumenis C, Mancuso A, Wellen KE.

Oncotarget. 2016 Jul 12;7(28):43713-43730. doi: 10.18632/oncotarget.9666.

6.

Novel lipogenic enzyme ELOVL7 is involved in prostate cancer growth through saturated long-chain fatty acid metabolism.

Tamura K, Makino A, Hullin-Matsuda F, Kobayashi T, Furihata M, Chung S, Ashida S, Miki T, Fujioka T, Shuin T, Nakamura Y, Nakagawa H.

Cancer Res. 2009 Oct 15;69(20):8133-40. doi: 10.1158/0008-5472.CAN-09-0775. Epub 2009 Oct 13.

7.

MicroRNA-185 and 342 inhibit tumorigenicity and induce apoptosis through blockade of the SREBP metabolic pathway in prostate cancer cells.

Li X, Chen YT, Josson S, Mukhopadhyay NK, Kim J, Freeman MR, Huang WC.

PLoS One. 2013 Aug 9;8(8):e70987. doi: 10.1371/journal.pone.0070987. eCollection 2013.

8.

Reactivation of androgen receptor-regulated lipid biosynthesis drives the progression of castration-resistant prostate cancer.

Han W, Gao S, Barrett D, Ahmed M, Han D, Macoska JA, He HH, Cai C.

Oncogene. 2018 Feb 8;37(6):710-721. doi: 10.1038/onc.2017.385. Epub 2017 Oct 23.

9.

Suppressing fatty acid uptake has therapeutic effects in preclinical models of prostate cancer.

Watt MJ, Clark AK, Selth LA, Haynes VR, Lister N, Rebello R, Porter LH, Niranjan B, Whitby ST, Lo J, Huang C, Schittenhelm RB, Anderson KE, Furic L, Wijayaratne PR, Matzaris M, Montgomery MK, Papargiris M, Norden S, Febbraio M, Risbridger GP, Frydenberg M, Nomura DK, Taylor RA.

Sci Transl Med. 2019 Feb 6;11(478). pii: eaau5758. doi: 10.1126/scitranslmed.aau5758.

PMID:
30728288
10.

Lipids and prostate cancer.

Suburu J, Chen YQ.

Prostaglandins Other Lipid Mediat. 2012 May;98(1-2):1-10. doi: 10.1016/j.prostaglandins.2012.03.003. Epub 2012 Apr 5. Review.

11.

Activation of androgen receptor, lipogenesis, and oxidative stress converged by SREBP-1 is responsible for regulating growth and progression of prostate cancer cells.

Huang WC, Li X, Liu J, Lin J, Chung LW.

Mol Cancer Res. 2012 Jan;10(1):133-42. doi: 10.1158/1541-7786.MCR-11-0206. Epub 2011 Nov 7.

12.

Direct visualization of de novo lipogenesis in single living cells.

Li J, Cheng JX.

Sci Rep. 2014 Oct 29;4:6807. doi: 10.1038/srep06807.

13.

[Advances in the studies of androgen metabolism and de novo androgen synthesis in castration resistant prostate cancer].

Wang B, Wu KJ, He DL.

Zhonghua Nan Ke Xue. 2013 Aug;19(8):736-41. Review. Chinese.

PMID:
24010211
14.

Aberrant Lipid Metabolism Promotes Prostate Cancer: Role in Cell Survival under Hypoxia and Extracellular Vesicles Biogenesis.

Deep G, Schlaepfer IR.

Int J Mol Sci. 2016 Jul 2;17(7). pii: E1061. doi: 10.3390/ijms17071061. Review.

15.

Androgens stimulate fatty acid synthase in the human prostate cancer cell line LNCaP.

Swinnen JV, Esquenet M, Goossens K, Heyns W, Verhoeven G.

Cancer Res. 1997 Mar 15;57(6):1086-90.

16.

Fine-tuning the lipogenic/lipolytic balance to optimize the metabolic requirements of cancer cell growth: molecular mechanisms and therapeutic perspectives.

Menendez JA.

Biochim Biophys Acta. 2010 Mar;1801(3):381-91. doi: 10.1016/j.bbalip.2009.09.005. Epub 2009 Sep 24. Review.

PMID:
19782152
17.

Androgen receptor as a driver of therapeutic resistance in advanced prostate cancer.

Kahn B, Collazo J, Kyprianou N.

Int J Biol Sci. 2014 Jun 1;10(6):588-95. doi: 10.7150/ijbs.8671. eCollection 2014.

18.

Interleukin-6 regulates androgen synthesis in prostate cancer cells.

Chun JY, Nadiminty N, Dutt S, Lou W, Yang JC, Kung HJ, Evans CP, Gao AC.

Clin Cancer Res. 2009 Aug 1;15(15):4815-22. doi: 10.1158/1078-0432.CCR-09-0640. Epub 2009 Jul 28.

19.

Salicylate activates AMPK and synergizes with metformin to reduce the survival of prostate and lung cancer cells ex vivo through inhibition of de novo lipogenesis.

O'Brien AJ, Villani LA, Broadfield LA, Houde VP, Galic S, Blandino G, Kemp BE, Tsakiridis T, Muti P, Steinberg GR.

Biochem J. 2015 Jul 15;469(2):177-87. doi: 10.1042/BJ20150122. Epub 2015 May 5.

PMID:
25940306
20.

Dysregulation of sterol response element-binding proteins and downstream effectors in prostate cancer during progression to androgen independence.

Ettinger SL, Sobel R, Whitmore TG, Akbari M, Bradley DR, Gleave ME, Nelson CC.

Cancer Res. 2004 Mar 15;64(6):2212-21.

Supplemental Content

Support Center