Format
Sort by
Items per page

Send to

Choose Destination

Links from PubMed

Items: 1 to 20 of 99

1.

Microhomologies are prevalent at Cas9-induced larger deletions.

Owens DDG, Caulder A, Frontera V, Harman JR, Allan AJ, Bucakci A, Greder L, Codner GF, Hublitz P, McHugh PJ, Teboul L, de Bruijn MFTR.

Nucleic Acids Res. 2019 Aug 22;47(14):7402-7417. doi: 10.1093/nar/gkz459.

2.

Harnessing accurate non-homologous end joining for efficient precise deletion in CRISPR/Cas9-mediated genome editing.

Guo T, Feng YL, Xiao JJ, Liu Q, Sun XN, Xiang JF, Kong N, Liu SC, Chen GQ, Wang Y, Dong MM, Cai Z, Lin H, Cai XJ, Xie AY.

Genome Biol. 2018 Oct 19;19(1):170. doi: 10.1186/s13059-018-1518-x.

3.

Efficient inversions and duplications of mammalian regulatory DNA elements and gene clusters by CRISPR/Cas9.

Li J, Shou J, Guo Y, Tang Y, Wu Y, Jia Z, Zhai Y, Chen Z, Xu Q, Wu Q.

J Mol Cell Biol. 2015 Aug;7(4):284-98. doi: 10.1093/jmcb/mjv016. Epub 2015 Mar 10.

4.

Efficient genome editing by FACS enrichment of paired D10A Cas9 nickases coupled with fluorescent proteins.

Gopalappa R, Song M, Chandrasekaran AP, Das S, Haq S, Koh HC, Ramakrishna S.

Arch Pharm Res. 2018 Sep;41(9):911-920. doi: 10.1007/s12272-018-1042-2. Epub 2018 May 31.

PMID:
29855892
5.

Characterization of genomic deletion efficiency mediated by clustered regularly interspaced short palindromic repeats (CRISPR)/Cas9 nuclease system in mammalian cells.

Canver MC, Bauer DE, Dass A, Yien YY, Chung J, Masuda T, Maeda T, Paw BH, Orkin SH.

J Biol Chem. 2014 Aug 1;289(31):21312-24. doi: 10.1074/jbc.M114.564625. Epub 2014 Jun 6. Erratum in: J Biol Chem. 2017 Feb 10;292(6):2556.

6.

Microhomology Selection for Microhomology Mediated End Joining in Saccharomyces cerevisiae.

Lee K, Ji JH, Yoon K, Che J, Seol JH, Lee SE, Shim EY.

Genes (Basel). 2019 Apr 8;10(4). pii: E284. doi: 10.3390/genes10040284.

7.

CRISPR/Cas9 systems have off-target activity with insertions or deletions between target DNA and guide RNA sequences.

Lin Y, Cradick TJ, Brown MT, Deshmukh H, Ranjan P, Sarode N, Wile BM, Vertino PM, Stewart FJ, Bao G.

Nucleic Acids Res. 2014 Jun;42(11):7473-85. doi: 10.1093/nar/gku402. Epub 2014 May 16.

8.

High doses of CRISPR/Cas9 ribonucleoprotein efficiently induce gene knockout with low mosaicism in the hydrozoan Clytia hemisphaerica through microhomology-mediated deletion.

Momose T, De Cian A, Shiba K, Inaba K, Giovannangeli C, Concordet JP.

Sci Rep. 2018 Aug 6;8(1):11734. doi: 10.1038/s41598-018-30188-0.

9.

Precision Targeted Mutagenesis via Cas9 Paired Nickases in Rice.

Mikami M, Toki S, Endo M.

Plant Cell Physiol. 2016 May;57(5):1058-68. doi: 10.1093/pcp/pcw049. Epub 2016 Mar 2.

10.

Characterization of large deletions in the F8 gene using multiple competitive amplification and the genome walking technique.

You GL, Ding QL, Lu YL, Dai J, Xi XD, Wang XF, Wang HL.

J Thromb Haemost. 2013 Jun;11(6):1103-10. doi: 10.1111/jth.12205.

11.

Large chromosomal deletions and heritable small genetic changes induced by CRISPR/Cas9 in rice.

Zhou H, Liu B, Weeks DP, Spalding MH, Yang B.

Nucleic Acids Res. 2014;42(17):10903-14. doi: 10.1093/nar/gku806. Epub 2014 Sep 8.

12.

Optimized CRISPR-Cas9 Genome Editing for Leishmania and Its Use To Target a Multigene Family, Induce Chromosomal Translocation, and Study DNA Break Repair Mechanisms.

Zhang WW, Lypaczewski P, Matlashewski G.

mSphere. 2017 Jan 18;2(1). pii: e00340-16. doi: 10.1128/mSphere.00340-16. eCollection 2017 Jan-Feb.

13.

Optimized paired-sgRNA/Cas9 cloning and expression cassette triggers high-efficiency multiplex genome editing in kiwifruit.

Wang Z, Wang S, Li D, Zhang Q, Li L, Zhong C, Liu Y, Huang H.

Plant Biotechnol J. 2018 Aug;16(8):1424-1433. doi: 10.1111/pbi.12884. Epub 2018 Feb 6.

14.

Multiple sgRNAs with overlapping sequences enhance CRISPR/Cas9-mediated knock-in efficiency.

Jang DE, Lee JY, Lee JH, Koo OJ, Bae HS, Jung MH, Bae JH, Hwang WS, Chang YJ, Lee YH, Lee HW, Yeom SC.

Exp Mol Med. 2018 Apr 6;50(4):16. doi: 10.1038/s12276-018-0037-x.

15.

Analysis of off-target effects of CRISPR/Cas-derived RNA-guided endonucleases and nickases.

Cho SW, Kim S, Kim Y, Kweon J, Kim HS, Bae S, Kim JS.

Genome Res. 2014 Jan;24(1):132-41. doi: 10.1101/gr.162339.113. Epub 2013 Nov 19.

16.

Efficient genome editing of genes involved in neural crest development using the CRISPR/Cas9 system in Xenopus embryos.

Liu Z, Cheng TT, Shi Z, Liu Z, Lei Y, Wang C, Shi W, Chen X, Qi X, Cai D, Feng B, Deng Y, Chen Y, Zhao H.

Cell Biosci. 2016 Mar 31;6:22. doi: 10.1186/s13578-016-0088-4. eCollection 2016.

17.

Precise and Predictable CRISPR Chromosomal Rearrangements Reveal Principles of Cas9-Mediated Nucleotide Insertion.

Shou J, Li J, Liu Y, Wu Q.

Mol Cell. 2018 Aug 16;71(4):498-509.e4. doi: 10.1016/j.molcel.2018.06.021. Epub 2018 Jul 19.

18.

CRISPR-Cas9-Mediated Genome Editing in Leishmania donovani.

Zhang WW, Matlashewski G.

MBio. 2015 Jul 21;6(4):e00861. doi: 10.1128/mBio.00861-15.

19.

Paired D10A Cas9 nickases are sometimes more efficient than individual nucleases for gene disruption.

Gopalappa R, Suresh B, Ramakrishna S, Kim HH.

Nucleic Acids Res. 2018 Jul 6;46(12):e71. doi: 10.1093/nar/gky222.

20.

Microhomology-assisted scarless genome editing in human iPSCs.

Kim SI, Matsumoto T, Kagawa H, Nakamura M, Hirohata R, Ueno A, Ohishi M, Sakuma T, Soga T, Yamamoto T, Woltjen K.

Nat Commun. 2018 Mar 5;9(1):939. doi: 10.1038/s41467-018-03044-y.

Supplemental Content

Support Center