Format
Sort by
Items per page

Send to

Choose Destination

Links from PubMed

Items: 1 to 20 of 110

1.

In situ TEM observation of Au-Cu2O core-shell growth in liquids.

Chen FC, Chen JY, Lin YH, Kuo MY, Hsu YJ, Wu WW.

Nanoscale. 2019 May 30;11(21):10486-10492. doi: 10.1039/c9nr00972h.

PMID:
31112184
2.

Cu2O-directed in situ growth of Au nanoparticles inside HKUST-1 nanocages.

Liu Y, Liu T, Tian L, Zhang L, Yao L, Tan T, Xu J, Han X, Liu D, Wang C.

Nanoscale. 2016 Dec 7;8(45):19075-19085. Epub 2016 Nov 8.

PMID:
27824196
3.

Au@Cu2O core-shell nanoparticles as chemiresistors for gas sensor applications: effect of potential barrier modulation on the sensing performance.

Rai P, Khan R, Raj S, Majhi SM, Park KK, Yu YT, Lee IH, Sekhar PK.

Nanoscale. 2014 Jan 7;6(1):581-8. doi: 10.1039/c3nr04118b. Epub 2013 Nov 18.

PMID:
24241354
4.

Size Control and Growth Process Study of Au@Cu2O Particles.

Wang Y, Zheng M, Liu S, Wang Z.

Nanoscale Res Lett. 2016 Dec;11(1):390. doi: 10.1186/s11671-016-1603-6. Epub 2016 Sep 8.

5.

Hollow Au-Cu2O Core-Shell Nanoparticles with Geometry-Dependent Optical Properties as Efficient Plasmonic Photocatalysts under Visible Light.

Lu B, Liu A, Wu H, Shen Q, Zhao T, Wang J.

Langmuir. 2016 Mar 29;32(12):3085-94. doi: 10.1021/acs.langmuir.6b00331. Epub 2016 Mar 14.

PMID:
26954100
6.

Au@Cu2O stellated polytope with core-shelled nanostructure for high-performance adsorption and visible-light-driven photodegradation of cationic and anionic dyes.

Wu X, Cai J, Li S, Zheng F, Lai Z, Zhu L, Chen T.

J Colloid Interface Sci. 2016 May 1;469:138-146. doi: 10.1016/j.jcis.2016.01.064. Epub 2016 Feb 6.

PMID:
26874979
7.

Effect of Au nanorods on potential barrier modulation in morphologically controlled Au@Cu2O core-shell nanoreactors for gas sensor applications.

Majhi SM, Rai P, Raj S, Chon BS, Park KK, Yu YT.

ACS Appl Mater Interfaces. 2014 May 28;6(10):7491-7. doi: 10.1021/am5008694. Epub 2014 May 9.

PMID:
24779525
8.

Ultrasensitive amperometric immunosensor for PSA detection based on Cu2O@CeO2-Au nanocomposites as integrated triple signal amplification strategy.

Li F, Li Y, Feng J, Dong Y, Wang P, Chen L, Chen Z, Liu H, Wei Q.

Biosens Bioelectron. 2017 Jan 15;87:630-637. doi: 10.1016/j.bios.2016.09.018. Epub 2016 Sep 6.

PMID:
27619526
9.

Direct Observation of Early Stages of Growth of Multilayered DNA-Templated Au-Pd-Au Core-Shell Nanoparticles in Liquid Phase.

Bhattarai N, Prozorov T.

Front Bioeng Biotechnol. 2019 Feb 26;7:19. doi: 10.3389/fbioe.2019.00019. eCollection 2019.

10.

Fabrication of Integrated Cu2O@HKUST-1@Au Nanocatalysts via Galvanic Replacements toward Alcohols Oxidation Application.

Zhan G, Fan L, Zhou S, Yang X.

ACS Appl Mater Interfaces. 2018 Oct 17;10(41):35234-35243. doi: 10.1021/acsami.8b12380. Epub 2018 Oct 3.

PMID:
30232888
11.

SERS study of surface plasmon resonance induced carrier movement in Au@Cu2O core-shell nanoparticles.

Chen L, Zhang F, Deng XY, Xue X, Wang L, Sun Y, Feng JD, Zhang Y, Wang Y, Jung YM.

Spectrochim Acta A Mol Biomol Spectrosc. 2018 Jan 15;189:608-612. doi: 10.1016/j.saa.2017.08.065. Epub 2017 Sep 1.

PMID:
28886507
12.

Pd@Au core-shell nanocrystals with concave cubic shapes: kinetically controlled synthesis and electrocatalytic properties.

Zhang L, Niu W, Zhao J, Zhu S, Yuan Y, Hua L, Xu G.

Faraday Discuss. 2013;164:175-88.

PMID:
24466664
13.

Microfluidic synthesis of Ag@Cu2O core-shell nanoparticles with enhanced photocatalytic activity.

Tao S, Yang M, Chen H, Ren M, Chen G.

J Colloid Interface Sci. 2017 Jan 15;486:16-26. doi: 10.1016/j.jcis.2016.09.051. Epub 2016 Sep 24.

PMID:
27689722
14.

Core-size-dependent catalytic properties of bimetallic Au/Ag core-shell nanoparticles.

Haldar KK, Kundu S, Patra A.

ACS Appl Mater Interfaces. 2014 Dec 24;6(24):21946-53. doi: 10.1021/am507391d. Epub 2014 Dec 12.

PMID:
25456348
15.

Controlling the Morphology of Au-Pd Heterodimer Nanoparticles by Surface Ligands.

Kluenker M, Connolly BM, Marolf DM, Nawaz Tahir M, Korschelt K, Simon P, Köhler U, Plana-Ruiz S, Barton B, Panthöfer M, Kolb U, Tremel W.

Inorg Chem. 2018 Nov 5;57(21):13640-13652. doi: 10.1021/acs.inorgchem.8b02236. Epub 2018 Oct 5.

PMID:
30289701
16.

Growth of Au on Pt icosahedral nanoparticles revealed by low-dose in situ TEM.

Wu J, Gao W, Wen J, Miller DJ, Lu P, Zuo JM, Yang H.

Nano Lett. 2015 Apr 8;15(4):2711-5. doi: 10.1021/acs.nanolett.5b00414. Epub 2015 Mar 9.

PMID:
25723499
17.

The surface plasmon-induced hot carrier effect on the catalytic activity of CO oxidation on a Cu2O/hexoctahedral Au inverse catalyst.

Lee SW, Hong JW, Lee H, Wi DH, Kim SM, Han SW, Park JY.

Nanoscale. 2018 Jun 14;10(23):10835-10843. doi: 10.1039/c8nr00555a.

PMID:
29694476
18.

Green fabrication of biologically active magnetic core-shell Fe3O4/Au nanoparticles and their potential anticancer effect.

Izadiyan Z, Shameli K, Miyake M, Teow SY, Peh SC, Mohamad SE, Mohd Taib SH.

Mater Sci Eng C Mater Biol Appl. 2019 Mar;96:51-57. doi: 10.1016/j.msec.2018.11.008. Epub 2018 Nov 6.

PMID:
30606561
19.

A Facile One-Pot Synthesis of Au/Cu2O Nanocomposites for Nonenzymatic Detection of Hydrogen Peroxide.

Chen T, Tian L, Chen Y, Liu B, Zhang J.

Nanoscale Res Lett. 2015 Dec;10(1):935. doi: 10.1186/s11671-015-0935-y. Epub 2015 Jun 3.

20.

Facet-Inspired Core-Shell Gold Nanoislands on Metal Oxide Octadecahedral Heterostructures: High Sensing Performance toward Sulfide in Biotic Fluids.

Asif M, Aziz A, Ashraf G, Wang Z, Wang J, Azeem M, Chen X, Xiao F, Liu H.

ACS Appl Mater Interfaces. 2018 Oct 31;10(43):36675-36685. doi: 10.1021/acsami.8b12186. Epub 2018 Oct 18.

PMID:
30298714

Supplemental Content

Support Center