Format
Sort by
Items per page

Send to

Choose Destination

Links from PubMed

Items: 1 to 20 of 96

1.

In silico evaluation of multispecies toxicity of natural compounds.

N S, M RK, N AK, S B, N K UP.

Drug Chem Toxicol. 2019 May 21:1-7. doi: 10.1080/01480545.2019.1614023. [Epub ahead of print]

PMID:
31111731
2.
3.

Prediction of Aquatic Toxicity of Benzene Derivatives to Tetrahymena pyriformis According to OECD Principles.

Castillo-Garit JA, Abad C, Casañola-Martin GM, Barigye SJ, Torrens F, Torreblanca A.

Curr Pharm Des. 2016;22(33):5085-5094. Review.

PMID:
27568732
4.

Quantitative structure-activity relationship modeling of the toxicity of organothiophosphate pesticides to Daphnia magna and Cyprinus carpio.

Zvinavashe E, Du T, Griff T, van den Berg HH, Soffers AE, Vervoort J, Murk AJ, Rietjens IM.

Chemosphere. 2009 Jun;75(11):1531-8. doi: 10.1016/j.chemosphere.2009.01.081. Epub 2009 Apr 18.

PMID:
19376559
5.

Combinatorial QSAR modeling of chemical toxicants tested against Tetrahymena pyriformis.

Zhu H, Tropsha A, Fourches D, Varnek A, Papa E, Gramatica P, Oberg T, Dao P, Cherkasov A, Tetko IV.

J Chem Inf Model. 2008 Apr;48(4):766-84. doi: 10.1021/ci700443v. Epub 2008 Mar 1.

PMID:
18311912
6.

Comparison of in silico models for prediction of Daphnia magna acute toxicity.

Golbamaki A, Cassano A, Lombardo A, Moggio Y, Colafranceschi M, Benfenati E.

SAR QSAR Environ Res. 2014;25(8):673-94. doi: 10.1080/1062936X.2014.923041. Epub 2014 Jun 9.

PMID:
24911142
7.

Predictive Computational Tools for Assessment of Ecotoxicological Activity of Organic Micropollutants in Various Water Sources in Brazil.

de Morais E Silva L, Lorenzo VP, Lopes WS, Scotti L, Scotti MT.

Mol Inform. 2019 Feb 6. doi: 10.1002/minf.201800156. [Epub ahead of print]

PMID:
30725528
8.

A comparison of sensitivity of spirotox biotest with standard toxicity tests.

Nałecz-Jawecki G, Sawicki J.

Arch Environ Contam Toxicol. 2002 May;42(4):389-95.

PMID:
11994778
9.

Combining unsupervised and supervised artificial neural networks to predictaquatic toxicity.

Gini G, Craciun MV, König C, Benfenati E.

J Chem Inf Comput Sci. 2004 Nov-Dec;44(6):1897-902.

PMID:
15554658
10.

Predicting skin sensitization potential of organic compounds based on toxicity enhancement to Tetrahymena pyriformis, fathead minnow, and Daphnia magna.

Zhang W, Chen L, Yao L.

J Immunotoxicol. 2018 Dec;15(1):82-89. doi: 10.1080/1547691X.2018.1465144.

PMID:
29697003
11.

QSAR studies of comparative toxicity in aquatic organisms.

Cronin MT, Dearden JC, Dobbs AJ.

Sci Total Environ. 1991 Dec;109-110:431-9.

PMID:
1815364
12.

Consensus QSAR modeling of toxicity of pharmaceuticals to different aquatic organisms: Ranking and prioritization of the DrugBank database compounds.

Khan K, Benfenati E, Roy K.

Ecotoxicol Environ Saf. 2019 Jan 30;168:287-297. doi: 10.1016/j.ecoenv.2018.10.060. Epub 2018 Nov 1.

PMID:
30390527
13.

Anti-inflammatory and antioxidant activities of naringin isolated from Carissa carandas L.: In vitro and in vivo evidence.

El-Desoky AH, Abdel-Rahman RF, Ahmed OK, El-Beltagi HS, Hattori M.

Phytomedicine. 2018 Mar 15;42:126-134. doi: 10.1016/j.phymed.2018.03.051. Epub 2018 Mar 19.

PMID:
29655678
14.

Comparative quantitative structure-activity-activity relationships for toxicity to Tetrahymena pyriformis and Pimephales promelas.

Kahn I, Maran U, Benfenati E, Netzeva TI, Schultz TW, Cronin MT.

Altern Lab Anim. 2007 Mar;35(1):15-24.

PMID:
17411347
15.

CORAL: QSAR models for acute toxicity in fathead minnow (Pimephales promelas).

Toropova AP, Toropov AA, Lombardo A, Roncaglioni A, Benfenati E, Gini G.

J Comput Chem. 2012 May 5;33(12):1218-23. doi: 10.1002/jcc.22953. Epub 2012 Feb 27.

PMID:
22371019
16.

Estimation of the Toxicity of Different Substituted Aromatic Compounds to the Aquatic Ciliate Tetrahymena pyriformis by QSAR Approach.

Luan F, Wang T, Tang L, Zhang S, Cordeiro MNDS.

Molecules. 2018 Apr 24;23(5). pii: E1002. doi: 10.3390/molecules23051002.

17.

QSAR analysis of the toxicity of nitroaromatics in Tetrahymena pyriformis: structural factors and possible modes of action.

Artemenko AG, Muratov EN, Kuz'min VE, Muratov NN, Varlamova EV, Kuz'mina AV, Gorb LG, Golius A, Hill FC, Leszczynski J, Tropsha A.

SAR QSAR Environ Res. 2011 Jul-Sep;22(5-6):575-601. doi: 10.1080/1062936X.2011.569950. Epub 2011 Jun 30.

18.

Aminomethylphosphonic acid has low chronic toxicity to Daphnia magna and Pimephales promelas.

Levine SL, von Mérey G, Minderhout T, Manson P, Sutton P.

Environ Toxicol Chem. 2015 Jun;34(6):1382-9. doi: 10.1002/etc.2940. Epub 2015 Apr 17.

PMID:
25690938
19.

Toxicity and quantitative structure-activity relationships of nitriles based on Pseudokirchneriella subcapitata.

Huang CP, Wang YJ, Chen CY.

Ecotoxicol Environ Saf. 2007 Jul;67(3):439-46. Epub 2006 Jul 27.

PMID:
16875732
20.

Ecotoxicological modelling of cosmetics for aquatic organisms: A QSTR approach.

Khan K, Roy K.

SAR QSAR Environ Res. 2017 Jul;28(7):567-594. doi: 10.1080/1062936X.2017.1352621. Epub 2017 Aug 7.

PMID:
28780892

Supplemental Content

Support Center