Format
Sort by
Items per page

Send to

Choose Destination

Links from PubMed

Items: 1 to 20 of 103

1.

Tailoring of Interfacial Band Offsets by an Atomically Thin Polar Insulating Layer To Enhance the Water-Splitting Performance of Oxide Heterojunction Photoanodes.

Kim TL, Choi MJ, Lee TH, Sohn W, Jang HW.

Nano Lett. 2019 May 22. doi: 10.1021/acs.nanolett.9b01431. [Epub ahead of print]

PMID:
31095915
2.

Enhanced electrical transparency by ultrathin LaAlO3 insertion at oxide metal/semiconductor heterointerfaces.

Yajima T, Minohara M, Bell C, Kumigashira H, Oshima M, Hwang HY, Hikita Y.

Nano Lett. 2015 Mar 11;15(3):1622-6. doi: 10.1021/nl504169m. Epub 2015 Feb 5.

PMID:
25654211
3.

BiVO4/WO3/SnO2 Double-Heterojunction Photoanode with Enhanced Charge Separation and Visible-Transparency for Bias-Free Solar Water-Splitting with a Perovskite Solar Cell.

Baek JH, Kim BJ, Han GS, Hwang SW, Kim DR, Cho IS, Jung HS.

ACS Appl Mater Interfaces. 2017 Jan 18;9(2):1479-1487. doi: 10.1021/acsami.6b12782. Epub 2017 Jan 3.

PMID:
27989115
4.

Three-Dimensional WO3 Nanoplate/Bi2S3 Nanorod Heterojunction as a Highly Efficient Photoanode for Improved Photoelectrochemical Water Splitting.

Wang Y, Tian W, Chen L, Cao F, Guo J, Li L.

ACS Appl Mater Interfaces. 2017 Nov 22;9(46):40235-40243. doi: 10.1021/acsami.7b11510. Epub 2017 Nov 7.

PMID:
29067799
5.

ZnO-Au-SnO2 Z-scheme photoanodes for remarkable photoelectrochemical water splitting.

Li JM, Cheng HY, Chiu YH, Hsu YJ.

Nanoscale. 2016 Aug 25;8(34):15720-9. doi: 10.1039/c6nr05605a.

PMID:
27527337
6.

Epitaxial Bi2FeCrO6 Multiferroic Thin-Film Photoanodes with Ultrathin p-Type NiO Layers for Improved Solar Water Oxidation.

Huang W, Harnagea C, Tong X, Benetti D, Sun S, Chaker M, Rosei F, Nechache R.

ACS Appl Mater Interfaces. 2019 Apr 10;11(14):13185-13193. doi: 10.1021/acsami.8b20998. Epub 2019 Apr 1.

PMID:
30892871
7.

n-Fe₂O₃ to N⁺-TiO₂Heterojunction Photoanode for Photoelectrochemical Water Oxidation.

Yang JS, Lin WH, Lin CY, Wang BS, Wu JJ.

ACS Appl Mater Interfaces. 2015 Jun 24;7(24):13314-21. doi: 10.1021/acsami.5b01489. Epub 2015 Jun 10.

PMID:
26027640
8.

Fully Depleted Ti-Nb-Ta-Zr-O Nanotubes: Interfacial Charge Dynamics and Solar Hydrogen Production.

Chiu YH, Lai TH, Chen CY, Hsieh PY, Ozasa K, Niinomi M, Okada K, Chang TM, Matsushita N, Sone M, Hsu YJ.

ACS Appl Mater Interfaces. 2018 Jul 11;10(27):22997-23008. doi: 10.1021/acsami.8b00727. Epub 2018 May 1.

PMID:
29664283
9.

Sacrificial Interlayer for Promoting Charge Transport in Hematite Photoanode.

Zhang K, Dong T, Xie G, Guan L, Guo B, Xiang Q, Dai Y, Tian L, Batool A, Jan SU, Boddula R, Thebo AA, Gong JR.

ACS Appl Mater Interfaces. 2017 Dec 13;9(49):42723-42733. doi: 10.1021/acsami.7b13163. Epub 2017 Dec 1.

PMID:
29193959
10.

Nano-engineering of p-n CuFeO2-ZnO heterojunction photoanode with improved light absorption and charge collection for photoelectrochemical water oxidation.

Karmakar K, Sarkar A, Mandal K, Khan GG.

Nanotechnology. 2017 Aug 11;28(32):325401. doi: 10.1088/1361-6528/aa7998. Epub 2017 Jun 14.

PMID:
28614067
11.

Thickness-Dependent Photoelectrochemical Water Splitting on Ultrathin LaFeO3 Films Grown on Nb:SrTiO3.

May KJ, Fenning DP, Ming T, Hong WT, Lee D, Stoerzinger KA, Biegalski MD, Kolpak AM, Shao-Horn Y.

J Phys Chem Lett. 2015 Mar 19;6(6):977-85. doi: 10.1021/acs.jpclett.5b00169. Epub 2015 Mar 4.

PMID:
26262856
12.

Energy Band Gap Modulation in Nd-Doped BiFeO3/SrRuO3 Heteroepitaxy for Visible Light Photoelectrochemical Activity.

Tan KH, Chen YW, Van CN, Wang H, Chen JW, Lim FS, Chew KH, Zhan Q, Wu CL, Chai SP, Chu YH, Chang WS.

ACS Appl Mater Interfaces. 2019 Jan 9;11(1):1655-1664. doi: 10.1021/acsami.8b17758. Epub 2018 Dec 28.

PMID:
30561192
13.

Photoelectrochemical Water Splitting System--A Study of Interfacial Charge Transfer with Scanning Electrochemical Microscopy.

Zhang B, Zhang X, Xiao X, Shen Y.

ACS Appl Mater Interfaces. 2016 Jan 27;8(3):1606-14. doi: 10.1021/acsami.5b07180. Epub 2016 Jan 15.

PMID:
26720831
14.

Manipulating the Interfacial Energetics of n-type Silicon Photoanode for Efficient Water Oxidation.

Yao T, Chen R, Li J, Han J, Qin W, Wang H, Shi J, Fan F, Li C.

J Am Chem Soc. 2016 Oct 19;138(41):13664-13672. doi: 10.1021/jacs.6b07188. Epub 2016 Oct 7.

PMID:
27653158
15.

Engineering Interfacial Silicon Dioxide for Improved Metal-Insulator-Semiconductor Silicon Photoanode Water Splitting Performance.

Satterthwaite PF, Scheuermann AG, Hurley PK, Chidsey CE, McIntyre PC.

ACS Appl Mater Interfaces. 2016 May 25;8(20):13140-9. doi: 10.1021/acsami.6b03029. Epub 2016 May 16.

PMID:
27096845
16.

A ZnO/ZnFe2O4 uniform core-shell heterojunction with a tubular structure modified by NiOOH for efficient photoelectrochemical water splitting.

Lan Y, Liu Z, Guo Z, Li X, Zhao L, Zhan L, Zhang M.

Dalton Trans. 2018 Sep 11;47(35):12181-12187. doi: 10.1039/c8dt02581a.

PMID:
30106080
17.

Plasmon-driven water splitting enhancement on plasmonic metal-insulator-semiconductor hetero-nanostructures: unraveling the crucial role of interfacial engineering.

Li C, Wang P, Li H, Wang M, Zhang J, Qi G, Jin Y.

Nanoscale. 2018 Aug 7;10(29):14290-14297. doi: 10.1039/c8nr03557a. Epub 2018 Jul 17.

PMID:
30015344
18.

Visible light water splitting using dye-sensitized oxide semiconductors.

Youngblood WJ, Lee SH, Maeda K, Mallouk TE.

Acc Chem Res. 2009 Dec 21;42(12):1966-73. doi: 10.1021/ar9002398.

PMID:
19905000
19.

Improving the Back Surface Field on an Amorphous Silicon Carbide Thin-Film Photocathode for Solar Water Splitting.

Perez-Rodriguez P, Cardenas-Morcoso D, Digdaya IA, Raventos AM, Procel P, Isabella O, Gimenez S, Zeman M, Smith WA, Smets AHM.

ChemSusChem. 2018 Jun 11;11(11):1797-1804. doi: 10.1002/cssc.201800782. Epub 2018 May 9.

PMID:
29692002
20.

Cascading Interfaces Enable n-Si Photoanodes for Efficient and Stable Solar Water Oxidation.

He L, Zhou W, Hong L, Wei D, Wang G, Shi X, Shen S.

J Phys Chem Lett. 2019 May 2;10(9):2278-2285. doi: 10.1021/acs.jpclett.9b00746. Epub 2019 Apr 24.

PMID:
31002523

Supplemental Content

Support Center