Format
Sort by
Items per page

Send to

Choose Destination

Links from PubMed

Items: 1 to 20 of 101

1.

Electron Transport through Metal/MoS2 Interfaces: Edge- or Area-Dependent Process?

Szabó Á, Jain A, Parzefall M, Novotny L, Luisier M.

Nano Lett. 2019 Jun 12;19(6):3641-3647. doi: 10.1021/acs.nanolett.9b00678. Epub 2019 May 14.

PMID:
31079463
2.

Schottky Barrier Height Engineering for Electrical Contacts of Multilayered MoS2 Transistors with Reduction of Metal-Induced Gap States.

Kim GS, Kim SH, Park J, Han KH, Kim J, Yu HY.

ACS Nano. 2018 Jun 26;12(6):6292-6300. doi: 10.1021/acsnano.8b03331. Epub 2018 Jun 6.

PMID:
29851473
3.

The unusual mechanism of partial Fermi level pinning at metal-MoS2 interfaces.

Gong C, Colombo L, Wallace RM, Cho K.

Nano Lett. 2014;14(4):1714-20. doi: 10.1021/nl403465v. Epub 2014 Mar 27.

PMID:
24660782
4.

Schottky Barrier Height Modulation Using Interface Characteristics of MoS2 Interlayer for Contact Structure.

Kim SH, Han KH, Kim GS, Kim SG, Kim J, Yu HY.

ACS Appl Mater Interfaces. 2019 Feb 13;11(6):6230-6237. doi: 10.1021/acsami.8b18860. Epub 2019 Feb 1.

PMID:
30663311
5.

The modulation of Schottky barriers of metal-MoS2 contacts via BN-MoS2 heterostructures.

Su J, Feng L, Zhang Y, Liu Z.

Phys Chem Chem Phys. 2016 Jun 22;18(25):16882-9. doi: 10.1039/c6cp02132h.

PMID:
27282959
6.

Controlling the electronic and geometric structures of 2D insertions to realize high performance metal/insertion-MoS2 sandwich interfaces.

Su J, Feng L, Zeng W, Liu Z.

Nanoscale. 2017 Jun 8;9(22):7429-7441. doi: 10.1039/c7nr00720e.

PMID:
28530290
7.

Defect Dominated Charge Transport and Fermi Level Pinning in MoS2/Metal Contacts.

Bampoulis P, van Bremen R, Yao Q, Poelsema B, Zandvliet HJW, Sotthewes K.

ACS Appl Mater Interfaces. 2017 Jun 7;9(22):19278-19286. doi: 10.1021/acsami.7b02739. Epub 2017 May 24.

8.

Comparative Study on Electronic Structures of Sc and Ti Contacts with Monolayer and Multilayer MoS2.

Li Z, Li X, Yang J.

ACS Appl Mater Interfaces. 2015 Jun 17;7(23):12981-7. doi: 10.1021/acsami.5b02782. Epub 2015 Jun 5.

PMID:
26018612
9.

Fermi Level Pinning at Electrical Metal Contacts of Monolayer Molybdenum Dichalcogenides.

Kim C, Moon I, Lee D, Choi MS, Ahmed F, Nam S, Cho Y, Shin HJ, Park S, Yoo WJ.

ACS Nano. 2017 Feb 28;11(2):1588-1596. doi: 10.1021/acsnano.6b07159. Epub 2017 Jan 23.

PMID:
28088846
10.

Anisotropic transport in 1T' monolayer MoS2 and its metal interfaces.

Saha D, Mahapatra S.

Phys Chem Chem Phys. 2017 Apr 19;19(16):10453-10461. doi: 10.1039/c7cp00816c.

PMID:
28382340
11.

Controllable Schottky barriers between MoS2 and permalloy.

Wang W, Liu Y, Tang L, Jin Y, Zhao T, Xiu F.

Sci Rep. 2014 Nov 5;4:6928. doi: 10.1038/srep06928.

12.

Junction-Structure-Dependent Schottky Barrier Inhomogeneity and Device Ideality of Monolayer MoS2 Field-Effect Transistors.

Moon BH, Han GH, Kim H, Choi H, Bae JJ, Kim J, Jin Y, Jeong HY, Joo MK, Lee YH, Lim SC.

ACS Appl Mater Interfaces. 2017 Mar 29;9(12):11240-11246. doi: 10.1021/acsami.6b16692. Epub 2017 Mar 20.

PMID:
28266221
13.

Electrical Contacts in Monolayer Arsenene Devices.

Wang Y, Ye M, Weng M, Li J, Zhang X, Zhang H, Guo Y, Pan Y, Xiao L, Liu J, Pan F, Lu J.

ACS Appl Mater Interfaces. 2017 Aug 30;9(34):29273-29284. doi: 10.1021/acsami.7b08513. Epub 2017 Aug 21.

PMID:
28783298
14.

n- and p-type ohmic contacts at monolayer gallium nitride-metal interfaces.

Guo Y, Pan F, Ren Y, Yao B, Yang C, Ye M, Wang Y, Li J, Zhang X, Yan J, Yang J, Lu J.

Phys Chem Chem Phys. 2018 Oct 7;20(37):24239-24249. doi: 10.1039/c8cp04759f. Epub 2018 Sep 13.

PMID:
30209481
15.

Tuning Schottky barriers for monolayer GaSe FETs by exploiting a weak Fermi level pinning effect.

Liu N, Zhou S, Gao N, Zhao J.

Phys Chem Chem Phys. 2018 Aug 22;20(33):21732-21738. doi: 10.1039/c8cp03740j.

PMID:
30105339
16.

A Fermi-Level-Pinning-Free 1D Electrical Contact at the Intrinsic 2D MoS2 -Metal Junction.

Yang Z, Kim C, Lee KY, Lee M, Appalakondaiah S, Ra CH, Watanabe K, Taniguchi T, Cho K, Hwang E, Hone J, Yoo WJ.

Adv Mater. 2019 May 8:e1808231. doi: 10.1002/adma.201808231. [Epub ahead of print]

PMID:
31066475
17.

Non-invasively improving the Schottky barriers of metal-MoS2 interfaces: effects of atomic vacancies in a BN buffer layer.

Su J, Feng L, Liu S, Liu Z.

Phys Chem Chem Phys. 2017 Aug 9;19(31):20582-20592. doi: 10.1039/c7cp03669h.

PMID:
28731119
18.

Interfacial n-Doping Using an Ultrathin TiO2 Layer for Contact Resistance Reduction in MoS2.

Kaushik N, Karmakar D, Nipane A, Karande S, Lodha S.

ACS Appl Mater Interfaces. 2016 Jan 13;8(1):256-63. doi: 10.1021/acsami.5b08559. Epub 2015 Dec 22.

PMID:
26649572
19.

Modified MXene: promising electrode materials for constructing Ohmic contacts with MoS2 for electronic device applications.

Zhao P, Jin H, Lv X, Huang B, Ma Y, Dai Y.

Phys Chem Chem Phys. 2018 Jun 20;20(24):16551-16557. doi: 10.1039/c8cp02300j.

PMID:
29872795
20.

In pursuit of barrierless transition metal dichalcogenides lateral heterojunctions.

Aierken Y, Sevik C, Gülseren O, Peeters FM, Çakır D.

Nanotechnology. 2018 Jul 20;29(29):295202. doi: 10.1088/1361-6528/aac17d. Epub 2018 May 1.

PMID:
29714168

Supplemental Content

Support Center