Format
Sort by
Items per page

Send to

Choose Destination

Links from PubMed

Items: 1 to 20 of 128

1.

Controlling CRISPR-Cas9 with ligand-activated and ligand-deactivated sgRNAs.

Kundert K, Lucas JE, Watters KE, Fellmann C, Ng AH, Heineike BM, Fitzsimmons CM, Oakes BL, Qu J, Prasad N, Rosenberg OS, Savage DF, El-Samad H, Doudna JA, Kortemme T.

Nat Commun. 2019 May 9;10(1):2127. doi: 10.1038/s41467-019-09985-2.

2.

Generation of PDX-1 mutant porcine blastocysts by introducing CRISPR/Cas9-system into porcine zygotes via electroporation.

Tanihara F, Hirata M, Nguyen NT, Le QA, Hirano T, Takemoto T, Nakai M, Fuchimoto DI, Otoi T.

Anim Sci J. 2019 Jan;90(1):55-61. doi: 10.1111/asj.13129. Epub 2018 Oct 25.

PMID:
30368976
3.

Optimized paired-sgRNA/Cas9 cloning and expression cassette triggers high-efficiency multiplex genome editing in kiwifruit.

Wang Z, Wang S, Li D, Zhang Q, Li L, Zhong C, Liu Y, Huang H.

Plant Biotechnol J. 2018 Aug;16(8):1424-1433. doi: 10.1111/pbi.12884. Epub 2018 Feb 6.

4.

A Single Transcript CRISPR-Cas9 System for Multiplex Genome Editing in Plants.

Tang X, Zhong Z, Ren Q, Liu B, Zhang Y.

Methods Mol Biol. 2019;1917:75-82. doi: 10.1007/978-1-4939-8991-1_6.

PMID:
30610629
5.

Refined sgRNA efficacy prediction improves large- and small-scale CRISPR-Cas9 applications.

Labuhn M, Adams FF, Ng M, Knoess S, Schambach A, Charpentier EM, Schwarzer A, Mateo JL, Klusmann JH, Heckl D.

Nucleic Acids Res. 2018 Feb 16;46(3):1375-1385. doi: 10.1093/nar/gkx1268.

6.

DNAzyme activated protein-scaffolded CRISPR-Cas9 nanoassembly for genome editing.

Zhu X, Lv MM, Liu JW, Yu RQ, Jiang JH.

Chem Commun (Camb). 2019 Jun 11;55(46):6511-6514. doi: 10.1039/c9cc03172c. Epub 2019 May 17.

PMID:
31099367
7.

Efficient Editing of the Nuclear APT Reporter Gene in Chlamydomonas reinhardtii via Expression of a CRISPR-Cas9 Module.

Guzmán-Zapata D, Sandoval-Vargas JM, Macedo-Osorio KS, Salgado-Manjarrez E, Castrejón-Flores JL, Oliver-Salvador MDC, Durán-Figueroa NV, Nogué F, Badillo-Corona JA.

Int J Mol Sci. 2019 Mar 12;20(5). pii: E1247. doi: 10.3390/ijms20051247.

8.

CRISPR/Cas9-mediated genome editing efficiently creates specific mutations at multiple loci using one sgRNA in Brassica napus.

Yang H, Wu JJ, Tang T, Liu KD, Dai C.

Sci Rep. 2017 Aug 8;7(1):7489. doi: 10.1038/s41598-017-07871-9. Erratum in: Sci Rep. 2018 Mar 15;8(1):4877.

9.

Selection of highly efficient sgRNAs for CRISPR/Cas9-based plant genome editing.

Liang G, Zhang H, Lou D, Yu D.

Sci Rep. 2016 Feb 19;6:21451. doi: 10.1038/srep21451.

10.

Aptazyme-mediated direct modulation of post-transcriptional sgRNA level for conditional genome editing and gene expression.

Chen H, Li Y, Du C, Li Y, Zhao J, Zheng X, Mao Q, Xia H.

J Biotechnol. 2018 Dec 20;288:23-29. doi: 10.1016/j.jbiotec.2018.10.011. Epub 2018 Nov 1.

PMID:
30391232
11.

The initiation, propagation and dynamics of CRISPR-SpyCas9 R-loop complex.

Zeng Y, Cui Y, Zhang Y, Zhang Y, Liang M, Chen H, Lan J, Song G, Lou J.

Nucleic Acids Res. 2018 Jan 9;46(1):350-361. doi: 10.1093/nar/gkx1117.

12.

Multigene editing via CRISPR/Cas9 guided by a single-sgRNA seed in Arabidopsis.

Yu Z, Chen Q, Chen W, Zhang X, Mei F, Zhang P, Zhao M, Wang X, Shi N, Jackson S, Hong Y.

J Integr Plant Biol. 2018 May;60(5):376-381. doi: 10.1111/jipb.12622. Epub 2018 Feb 8.

PMID:
29226588
13.

Target-Specific Precision of CRISPR-Mediated Genome Editing.

Chakrabarti AM, Henser-Brownhill T, Monserrat J, Poetsch AR, Luscombe NM, Scaffidi P.

Mol Cell. 2019 Feb 21;73(4):699-713.e6. doi: 10.1016/j.molcel.2018.11.031. Epub 2018 Dec 13.

14.

Disabling Cas9 by an anti-CRISPR DNA mimic.

Shin J, Jiang F, Liu JJ, Bray NL, Rauch BJ, Baik SH, Nogales E, Bondy-Denomy J, Corn JE, Doudna JA.

Sci Adv. 2017 Jul 12;3(7):e1701620. doi: 10.1126/sciadv.1701620. eCollection 2017 Jul.

15.

Guide RNA Design for CRISPR/Cas9-Mediated Potato Genome Editing.

Khromov AV, Gushchin VA, Timerbaev VI, Kalinina NO, Taliansky ME, Makarov VV.

Dokl Biochem Biophys. 2018 Mar;479(1):90-94. doi: 10.1134/S1607672918020084. Epub 2018 May 19.

PMID:
29779105
16.

CRISPR/Cas9-mediated 2-sgRNA cleavage facilitates pseudorabies virus editing.

Tang YD, Guo JC, Wang TY, Zhao K, Liu JT, Gao JC, Tian ZJ, An TQ, Cai XH.

FASEB J. 2018 Aug;32(8):4293-4301. doi: 10.1096/fj.201701129R. Epub 2018 Mar 6.

PMID:
29509513
17.

Genome Editing with CRISPR-Cas9: Can It Get Any Better?

Haeussler M, Concordet JP.

J Genet Genomics. 2016 May 20;43(5):239-50. doi: 10.1016/j.jgg.2016.04.008. Epub 2016 Apr 24. Review.

18.

Generation of conditional Acvrl1 knockout mice by CRISPR/Cas9-mediated gene targeting.

Xu M, Xu H, Chen J, Chen C, Xu F, Qin Z.

Mol Cell Probes. 2018 Feb;37:32-38. doi: 10.1016/j.mcp.2017.11.003. Epub 2017 Nov 10.

PMID:
29129659
19.

CRISPR-Based Technologies: Impact of RNA-Targeting Systems.

Terns MP.

Mol Cell. 2018 Nov 1;72(3):404-412. doi: 10.1016/j.molcel.2018.09.018. Review.

PMID:
30388409
20.

Precise and Predictable CRISPR Chromosomal Rearrangements Reveal Principles of Cas9-Mediated Nucleotide Insertion.

Shou J, Li J, Liu Y, Wu Q.

Mol Cell. 2018 Aug 16;71(4):498-509.e4. doi: 10.1016/j.molcel.2018.06.021. Epub 2018 Jul 19.

PMID:
30033371

Supplemental Content

Support Center