Format
Sort by
Items per page

Send to

Choose Destination

Links from PubMed

Items: 1 to 20 of 144

1.

Nontypeable Haemophilus influenzae Has Evolved Preferential Use of N-Acetylneuraminic Acid as a Host Adaptation.

Ng PSK, Day CJ, Atack JM, Hartley-Tassell LE, Winter LE, Marshanski T, Padler-Karavani V, Varki A, Barenkamp SJ, Apicella MA, Jennings MP.

MBio. 2019 May 7;10(3). pii: e00422-19. doi: 10.1128/mBio.00422-19.

2.

Nontypeable Haemophilus influenzae Lipooligosaccharide Expresses a Terminal Ketodeoxyoctanoate In Vivo, Which Can Be Used as a Target for Bactericidal Antibody.

Apicella MA, Coffin J, Ketterer M, Post DMB, Day CJ, Jen FE, Jennings MP.

MBio. 2018 Jul 31;9(4). pii: e01401-18. doi: 10.1128/mBio.01401-18.

3.
4.

Characterization of the N-acetyl-5-neuraminic acid-binding site of the extracytoplasmic solute receptor (SiaP) of nontypeable Haemophilus influenzae strain 2019.

Johnston JW, Coussens NP, Allen S, Houtman JC, Turner KH, Zaleski A, Ramaswamy S, Gibson BW, Apicella MA.

J Biol Chem. 2008 Jan 11;283(2):855-65. Epub 2007 Oct 18.

5.

Nontypeable Haemophilus influenzae: the role of N-acetyl-5-neuraminic acid in biology.

Apicella MA.

Front Cell Infect Microbiol. 2012 Mar 13;2:19. doi: 10.3389/fcimb.2012.00019. eCollection 2012. Review.

6.

Novel mechanism for the generation of human xeno-autoantibodies against the nonhuman sialic acid N-glycolylneuraminic acid.

Taylor RE, Gregg CJ, Padler-Karavani V, Ghaderi D, Yu H, Huang S, Sorensen RU, Chen X, Inostroza J, Nizet V, Varki A.

J Exp Med. 2010 Aug 2;207(8):1637-46. doi: 10.1084/jem.20100575. Epub 2010 Jul 12.

7.

Comparative Analyses of the Lipooligosaccharides from Nontypeable Haemophilus influenzae and Haemophilus haemolyticus Show Differences in Sialic Acid and Phosphorylcholine Modifications.

Post DM, Ketterer MR, Coffin JE, Reinders LM, Munson RS Jr, Bair T, Murphy TF, Foster ED, Gibson BW, Apicella MA.

Infect Immun. 2016 Jan 4;84(3):765-74. doi: 10.1128/IAI.01185-15.

8.

Sialylation of lipooligosaccharides promotes biofilm formation by nontypeable Haemophilus influenzae.

Swords WE, Moore ML, Godzicki L, Bukofzer G, Mitten MJ, VonCannon J.

Infect Immun. 2004 Jan;72(1):106-13.

9.

Role of sialic acid and complex carbohydrate biosynthesis in biofilm formation by nontypeable Haemophilus influenzae in the chinchilla middle ear.

Jurcisek J, Greiner L, Watanabe H, Zaleski A, Apicella MA, Bakaletz LO.

Infect Immun. 2005 Jun;73(6):3210-8.

10.

Uptake of Sialic Acid by Nontypeable Haemophilus influenzae Increases Complement Resistance through Decreasing IgM-Dependent Complement Activation.

Oerlemans MMP, Moons SJ, Heming JJA, Boltje TJ, de Jonge MI, Langereis JD.

Infect Immun. 2019 May 21;87(6). pii: e00077-19. doi: 10.1128/IAI.00077-19. Print 2019 Jun.

PMID:
30936154
11.

A study on the regulation of N-glycoloylneuraminic acid biosynthesis and utilization in rat and mouse liver.

Lepers A, Shaw L, Schneckenburger P, Cacan R, Verbert A, Schauer R.

Eur J Biochem. 1990 Nov 13;193(3):715-23.

12.

Utilizing CMP-Sialic Acid Analogs to Unravel Neisseria gonorrhoeae Lipooligosaccharide-Mediated Complement Resistance and Design Novel Therapeutics.

Gulati S, Schoenhofen IC, Whitfield DM, Cox AD, Li J, St Michael F, Vinogradov EV, Stupak J, Zheng B, Ohnishi M, Unemo M, Lewis LA, Taylor RE, Landig CS, Diaz S, Reed GW, Varki A, Rice PA, Ram S.

PLoS Pathog. 2015 Dec 2;11(12):e1005290. doi: 10.1371/journal.ppat.1005290. eCollection 2015 Dec.

13.

Nontypeable Haemophilus influenzae strain 2019 produces a biofilm containing N-acetylneuraminic acid that may mimic sialylated O-linked glycans.

Greiner LL, Watanabe H, Phillips NJ, Shao J, Morgan A, Zaleski A, Gibson BW, Apicella MA.

Infect Immun. 2004 Jul;72(7):4249-60.

14.

Underlying glycans determine the ability of sialylated lipooligosaccharide to protect nontypeable Haemophilus influenzae from serum IgM and complement.

Jackson MD, Wong SM, Akerley BJ.

Infect Immun. 2019 Aug 12. pii: IAI.00456-19. doi: 10.1128/IAI.00456-19. [Epub ahead of print]

PMID:
31405955
15.

Selective Inhibition of Sialic Acid-Based Molecular Mimicry in Haemophilus influenzae Abrogates Serum Resistance.

Heise T, Langereis JD, Rossing E, de Jonge MI, Adema GJ, Büll C, Boltje TJ.

Cell Chem Biol. 2018 Oct 18;25(10):1279-1285.e8. doi: 10.1016/j.chembiol.2018.05.018. Epub 2018 Jul 5.

PMID:
29983272
16.

Metabolism of vertebrate amino sugars with N-glycolyl groups: elucidating the intracellular fate of the non-human sialic acid N-glycolylneuraminic acid.

Bergfeld AK, Pearce OM, Diaz SL, Pham T, Varki A.

J Biol Chem. 2012 Aug 17;287(34):28865-81. doi: 10.1074/jbc.M112.363549. Epub 2012 Jun 12.

17.

Loss of N-glycolylneuraminic acid in human evolution. Implications for sialic acid recognition by siglecs.

Brinkman-Van der Linden EC, Sjoberg ER, Juneja LR, Crocker PR, Varki N, Varki A.

J Biol Chem. 2000 Mar 24;275(12):8633-40.

18.

Structural and functional characterization of CMP-N-acetylneuraminate synthetase from Vibrio cholerae.

Bose S, Purkait D, Joseph D, Nayak V, Subramanian R.

Acta Crystallogr D Struct Biol. 2019 Jun 1;75(Pt 6):564-577. doi: 10.1107/S2059798319006831. Epub 2019 May 31.

19.

Transport and catabolism of the sialic acids N-glycolylneuraminic acid and 3-keto-3-deoxy-D-glycero-D-galactonononic acid by Escherichia coli K-12.

Hopkins AP, Hawkhead JA, Thomas GH.

FEMS Microbiol Lett. 2013 Oct;347(1):14-22. doi: 10.1111/1574-6968.12213. Epub 2013 Aug 2.

20.

N-glycolylneuraminic acid on human epithelial cells prevents entry of influenza A viruses that possess N-glycolylneuraminic acid binding ability.

Takahashi T, Takano M, Kurebayashi Y, Masuda M, Kawagishi S, Takaguchi M, Yamanaka T, Minami A, Otsubo T, Ikeda K, Suzuki T.

J Virol. 2014 Aug;88(15):8445-56. doi: 10.1128/JVI.00716-14. Epub 2014 May 14.

Supplemental Content

Support Center