Format
Sort by
Items per page

Send to

Choose Destination

Links from PubMed

Items: 1 to 20 of 102

1.

Defects in Efflux (oprM), β-Lactamase (ampC), and Lipopolysaccharide Transport (lptE) Genes Mediate Antibiotic Hypersusceptibility of Pseudomonas aeruginosa Strain Z61.

Shen X, Johnson NV, Kreamer NNK, Barnes SW, Walker JR, Woods AL, Six DA, Dean CR.

Antimicrob Agents Chemother. 2019 Jun 24;63(7). pii: e00784-19. doi: 10.1128/AAC.00784-19. Print 2019 Jul.

PMID:
31036686
2.
3.

Multiple genotypic changes in hypersusceptible strains of Pseudomonas aeruginosa isolated from cystic fibrosis patients do not always correlate with the phenotype.

Wolter DJ, Black JA, Lister PD, Hanson ND.

J Antimicrob Chemother. 2009 Aug;64(2):294-300. doi: 10.1093/jac/dkp185. Epub 2009 May 25.

PMID:
19468029
4.
5.

An efflux pump (MexAB-OprM) of Pseudomonas aeruginosa is associated with antibacterial activity of Epigallocatechin-3-gallate (EGCG).

Kanagaratnam R, Sheikh R, Alharbi F, Kwon DH.

Phytomedicine. 2017 Dec 1;36:194-200. doi: 10.1016/j.phymed.2017.10.010. Epub 2017 Oct 12.

PMID:
29157815
6.

Outer membrane permeability in Pseudomonas aeruginosa: comparison of a wild-type with an antibiotic-supersusceptible mutant.

Angus BL, Carey AM, Caron DA, Kropinski AM, Hancock RE.

Antimicrob Agents Chemother. 1982 Feb;21(2):299-309.

7.

Loss of activity of ceftazidime-avibactam due to MexAB-OprM efflux and overproduction of AmpC cephalosporinase in Pseudomonas aeruginosa isolated from patients suffering from cystic fibrosis.

Chalhoub H, Sáenz Y, Nichols WW, Tulkens PM, Van Bambeke F.

Int J Antimicrob Agents. 2018 Nov;52(5):697-701. doi: 10.1016/j.ijantimicag.2018.07.027. Epub 2018 Aug 3.

PMID:
30081137
8.

Resistance to beta-lactam antibiotics in Pseudomonas aeruginosa due to interplay between the MexAB-OprM efflux pump and beta-lactamase.

Nakae T, Nakajima A, Ono T, Saito K, Yoneyama H.

Antimicrob Agents Chemother. 1999 May;43(5):1301-3.

9.

Hypersusceptibility of the Pseudomonas aeruginosa nfxB mutant to beta-lactams due to reduced expression of the ampC beta-lactamase.

Masuda N, Sakagawa E, Ohya S, Gotoh N, Nishino T.

Antimicrob Agents Chemother. 2001 Apr;45(4):1284-6.

10.

In vivo emergence of multidrug-resistant mutants of Pseudomonas aeruginosa overexpressing the active efflux system MexA-MexB-OprM.

Ziha-Zarifi I, Llanes C, Köhler T, Pechere JC, Plesiat P.

Antimicrob Agents Chemother. 1999 Feb;43(2):287-91.

11.

Assignment of the substrate-selective subunits of the MexEF-OprN multidrug efflux pump of Pseudomonas aeruginosa.

Maseda H, Yoneyama H, Nakae T.

Antimicrob Agents Chemother. 2000 Mar;44(3):658-64.

12.

Antagonistic interactions of Pseudomonas aeruginosa antibiotic resistance mechanisms in planktonic but not biofilm growth.

Mulet X, Moyá B, Juan C, Macià MD, Pérez JL, Blázquez J, Oliver A.

Antimicrob Agents Chemother. 2011 Oct;55(10):4560-8. doi: 10.1128/AAC.00519-11. Epub 2011 Aug 1.

13.

The role of mex-gene products in antibiotic extrusion in Pseudomonas aeruginosa.

Yoneyama H, Ocaktan A, Tsuda M, Nakae T.

Biochem Biophys Res Commun. 1997 Apr 28;233(3):611-8.

PMID:
9168899
14.

Beta-lactamase inhibitors are substrates for the multidrug efflux pumps of Pseudomonas aeruginosa.

Li XZ, Zhang L, Srikumar R, Poole K.

Antimicrob Agents Chemother. 1998 Feb;42(2):399-403.

15.
16.

lptG contributes to changes in membrane permeability and the emergence of multidrug hypersusceptibility in a cystic fibrosis isolate of Pseudomonas aeruginosa.

Harrison LB, Fowler RC, Abdalhamid B, Selmecki A, Hanson ND.

Microbiologyopen. 2019 Apr 12:e844. doi: 10.1002/mbo3.844. [Epub ahead of print]

19.
20.

Conessine as a novel inhibitor of multidrug efflux pump systems in Pseudomonas aeruginosa.

Siriyong T, Srimanote P, Chusri S, Yingyongnarongkul BE, Suaisom C, Tipmanee V, Voravuthikunchai SP.

BMC Complement Altern Med. 2017 Aug 14;17(1):405. doi: 10.1186/s12906-017-1913-y.

Supplemental Content

Support Center