Format
Sort by
Items per page

Send to

Choose Destination

Links from PubMed

Items: 1 to 20 of 99

1.

Harvesting of interacting stochastic populations.

Hening A, Tran KQ, Phan TT, Yin G.

J Math Biol. 2019 Apr 27. doi: 10.1007/s00285-019-01368-x. [Epub ahead of print]

PMID:
31030297
2.

Asymptotic harvesting of populations in random environments.

Hening A, Nguyen DH, Ungureanu SC, Wong TK.

J Math Biol. 2019 Jan;78(1-2):293-329. doi: 10.1007/s00285-018-1275-1. Epub 2018 Aug 4.

PMID:
30078160
3.

Optimal escapement in stage-structured fisheries with environmental stochasticity.

Holden MH, Conrad JM.

Math Biosci. 2015 Nov;269:76-85. doi: 10.1016/j.mbs.2015.08.021. Epub 2015 Sep 9.

PMID:
26362229
4.

Harvesting in seasonal environments.

Xu C, Boyce MS, Daley DJ.

J Math Biol. 2005 Jun;50(6):663-82. Epub 2004 Dec 20.

PMID:
15614548
5.

Range contraction enables harvesting to extinction.

Burgess MG, Costello C, Fredston-Hermann A, Pinsky ML, Gaines SD, Tilman D, Polasky S.

Proc Natl Acad Sci U S A. 2017 Apr 11;114(15):3945-3950. doi: 10.1073/pnas.1607551114. Epub 2017 Mar 28.

6.

Long time horizon for adaptive management to reveal predation effects in a salmon fishery.

Walsworth TE, Schindler DE.

Ecol Appl. 2016 Dec;26(8):2693-2705. doi: 10.1002/eap.1417. Epub 2016 Nov 22.

PMID:
27875003
7.

Optimal harvesting from a population in a stochastic crowded environment.

Lungu EM, Oksendal B.

Math Biosci. 1997 Oct 1;145(1):47-75.

PMID:
9271895
8.

Optimal harvesting under stochastic fluctuations and critical depensation.

Alvarez LH.

Math Biosci. 1998 Aug 15;152(1):63-85.

PMID:
9727297
9.

Spatial distribution and optimal harvesting of an age-structured population in a fluctuating environment.

Engen S, Lee AM, Sæther BE.

Math Biosci. 2018 Feb;296:36-44. doi: 10.1016/j.mbs.2017.12.003. Epub 2017 Dec 11.

PMID:
29241761
10.

A technique for estimating maximum harvesting effort in a stochastic fishery model.

Sarkar RR, Chattopadhyay J.

J Biosci. 2003 Jun;28(4):497-506.

PMID:
12799496
11.
12.

Macromolecular crowding: chemistry and physics meet biology (Ascona, Switzerland, 10-14 June 2012).

Foffi G, Pastore A, Piazza F, Temussi PA.

Phys Biol. 2013 Aug;10(4):040301. Epub 2013 Aug 2.

PMID:
23912807
13.

A simplified stochastic optimization model for logistic dynamics with control-dependent carrying capacity.

Yoshioka H.

J Biol Dyn. 2019 Dec;13(1):148-176. doi: 10.1080/17513758.2019.1576927.

PMID:
30727850
14.

Optimal harvesting of prey-predator system with interval biological parameters: a bioeconomic model.

Pal D, Mahaptra GS, Samanta GP.

Math Biosci. 2013 Feb;241(2):181-7. doi: 10.1016/j.mbs.2012.11.007. Epub 2012 Dec 3.

PMID:
23219573
15.

Analysis of a stochastic tri-trophic food-chain model with harvesting.

Liu M, Bai C.

J Math Biol. 2016 Sep;73(3):597-625. doi: 10.1007/s00285-016-0970-z. Epub 2016 Feb 4.

PMID:
26846770
16.

Bifurcation and optimal harvesting of a diffusive predator-prey system with delays and interval biological parameters.

Zhang X, Zhao H.

J Theor Biol. 2014 Dec 21;363:390-403. doi: 10.1016/j.jtbi.2014.08.031. Epub 2014 Aug 27.

PMID:
25172773
17.

Harvesting in discrete-time predator-prey systems.

Basson M, Fogarty MJ.

Math Biosci. 1997 Apr 1;141(1):41-74.

PMID:
9077079
18.

Relationship between exploitation, oscillation, MSY and extinction.

Ghosh B, Kar TK, Legovic T.

Math Biosci. 2014 Oct;256:1-9. doi: 10.1016/j.mbs.2014.07.005. Epub 2014 Jul 19.

PMID:
25050794
19.

A problem of optimal harvesting policy in two-stage age-dependent populations.

Busoni G, Matucci S.

Math Biosci. 1997 Jul 1;143(1):1-33.

PMID:
9198357
20.

Supplemental Content

Support Center