Format
Sort by
Items per page

Send to

Choose Destination

Links from PubMed

Items: 1 to 20 of 101

1.

Short Cationic Peptide Derived from Archaea with Dual Antibacterial Properties and Anti-Infective Potential.

Cândido ES, Cardoso MH, Chan LY, Torres MDT, Oshiro KGN, Porto WF, Ribeiro SM, Haney EF, Hancock REW, Lu TK, de la Fuente-Nunez C, Craik DJ, Franco OL.

ACS Infect Dis. 2019 Jul 12;5(7):1081-1086. doi: 10.1021/acsinfecdis.9b00073. Epub 2019 May 1.

PMID:
31016969
2.

A short peptide with selective anti-biofilm activity against Pseudomonas aeruginosa and Klebsiella pneumoniae carbapenemase-producing bacteria.

Cardoso MH, Santos VPM, Costa BO, Buccini DF, Rezende SB, Porto WF, Santos MJ, Silva ON, Ribeiro SM, Franco OL.

Microb Pathog. 2019 Jun 20;135:103605. doi: 10.1016/j.micpath.2019.103605. [Epub ahead of print]

PMID:
31228542
3.

Engineered cationic antimicrobial peptide (eCAP) prevents Pseudomonas aeruginosa biofilm growth on airway epithelial cells.

Lashua LP, Melvin JA, Deslouches B, Pilewski JM, Montelaro RC, Bomberger JM.

J Antimicrob Chemother. 2016 Aug;71(8):2200-7. doi: 10.1093/jac/dkw143. Epub 2016 May 26.

4.

Design and surface immobilization of short anti-biofilm peptides.

Mishra B, Lushnikova T, Golla RM, Wang X, Wang G.

Acta Biomater. 2017 Feb;49:316-328. doi: 10.1016/j.actbio.2016.11.061. Epub 2016 Nov 30.

5.

Antimicrobial activity of synthetic cationic peptides and lipopeptides derived from human lactoferricin against Pseudomonas aeruginosa planktonic cultures and biofilms.

Sánchez-Gómez S, Ferrer-Espada R, Stewart PS, Pitts B, Lohner K, Martínez de Tejada G.

BMC Microbiol. 2015 Jul 7;15:137. doi: 10.1186/s12866-015-0473-x.

6.

Positional scanning library applied to the human eosinophil cationic protein/RNase3 N-terminus reveals novel and potent anti-biofilm peptides.

Pulido D, Prats-Ejarque G, Villalba C, Albacar M, Moussaoui M, Andreu D, Volkmer R, Torrent M, Boix E.

Eur J Med Chem. 2018 May 25;152:590-599. doi: 10.1016/j.ejmech.2018.05.012. Epub 2018 May 8.

PMID:
29763807
7.

Antibacterial Properties and Efficacy of a Novel SPLUNC1-Derived Antimicrobial Peptide, α4-Short, in a Murine Model of Respiratory Infection.

Jiang S, Deslouches B, Chen C, Di ME, Di YP.

MBio. 2019 Apr 9;10(2). pii: e00226-19. doi: 10.1128/mBio.00226-19.

8.

Potent effects of amino acid scanned antimicrobial peptide Feleucin-K3 analogs against both multidrug-resistant strains and biofilms of Pseudomonas aeruginosa.

Xie J, Li Y, Li J, Yan Z, Wang D, Guo X, Zhang J, Zhang B, Mou L, Yang W, Jiang X.

Amino Acids. 2018 Oct;50(10):1471-1483. doi: 10.1007/s00726-018-2625-4. Epub 2018 Aug 22.

PMID:
30136030
9.

Efficacy of a novel antimicrobial peptide against periodontal pathogens in both planktonic and polymicrobial biofilm states.

Wang HY, Cheng JW, Yu HY, Lin L, Chih YH, Pan YP.

Acta Biomater. 2015 Oct;25:150-61. doi: 10.1016/j.actbio.2015.07.031. Epub 2015 Jul 22.

PMID:
26210284
10.

Co-immobilization of Palm and DNase I for the development of an effective anti-infective coating for catheter surfaces.

Alves D, Magalhães A, Grzywacz D, Neubauer D, Kamysz W, Pereira MO.

Acta Biomater. 2016 Oct 15;44:313-22. doi: 10.1016/j.actbio.2016.08.010. Epub 2016 Aug 8.

PMID:
27514277
11.

Selective phenylalanine to proline substitution for improved antimicrobial and anticancer activities of peptides designed on phenylalanine heptad repeat.

Tripathi AK, Kumari T, Tandon A, Sayeed M, Afshan T, Kathuria M, Shukla PK, Mitra K, Ghosh JK.

Acta Biomater. 2017 Jul 15;57:170-186. doi: 10.1016/j.actbio.2017.05.007. Epub 2017 May 5.

PMID:
28483698
12.

Study of the effect of antimicrobial peptide mimic, CSA-13, on an established biofilm formed by Pseudomonas aeruginosa.

Nagant C, Pitts B, Stewart PS, Feng Y, Savage PB, Dehaye JP.

Microbiologyopen. 2013 Apr;2(2):318-25. doi: 10.1002/mbo3.77. Epub 2013 Feb 25.

13.

Effects and mechanisms of the secondary structure on the antimicrobial activity and specificity of antimicrobial peptides.

Mai XT, Huang J, Tan J, Huang Y, Chen Y.

J Pept Sci. 2015 Jul;21(7):561-8. doi: 10.1002/psc.2767. Epub 2015 Mar 30.

PMID:
25826179
14.
15.

Potential novel therapeutic strategies in cystic fibrosis: antimicrobial and anti-biofilm activity of natural and designed α-helical peptides against Staphylococcus aureus, Pseudomonas aeruginosa, and Stenotrophomonas maltophilia.

Pompilio A, Crocetta V, Scocchi M, Pomponio S, Di Vincenzo V, Mardirossian M, Gherardi G, Fiscarelli E, Dicuonzo G, Gennaro R, Di Bonaventura G.

BMC Microbiol. 2012 Jul 23;12:145. doi: 10.1186/1471-2180-12-145.

16.

Effect of stereochemistry, chain length and sequence pattern on antimicrobial properties of short synthetic β-sheet forming peptide amphiphiles.

Ong ZY, Cheng J, Huang Y, Xu K, Ji Z, Fan W, Yang YY.

Biomaterials. 2014 Jan;35(4):1315-25. doi: 10.1016/j.biomaterials.2013.10.053. Epub 2013 Nov 7.

PMID:
24211081
17.

Identification of peptides derived from the human antimicrobial peptide LL-37 active against biofilms formed by Pseudomonas aeruginosa using a library of truncated fragments.

Nagant C, Pitts B, Nazmi K, Vandenbranden M, Bolscher JG, Stewart PS, Dehaye JP.

Antimicrob Agents Chemother. 2012 Nov;56(11):5698-708. doi: 10.1128/AAC.00918-12. Epub 2012 Aug 20.

18.

A peptide from human β thymosin as a platform for the development of new anti-biofilm agents for Staphylococcus spp. and Pseudomonas aeruginosa.

Schillaci D, Spinello A, Cusimano MG, Cascioferro S, Barone G, Vitale M, Arizza V.

World J Microbiol Biotechnol. 2016 Aug;32(8):124. doi: 10.1007/s11274-016-2096-2. Epub 2016 Jun 23.

PMID:
27339305
19.

Antimicrobial peptide GL13K is effective in reducing biofilms of Pseudomonas aeruginosa.

Hirt H, Gorr SU.

Antimicrob Agents Chemother. 2013 Oct;57(10):4903-10. doi: 10.1128/AAC.00311-13. Epub 2013 Aug 5.

20.

Highly selective end-tagged antimicrobial peptides derived from PRELP.

Malmsten M, Kasetty G, Pasupuleti M, Alenfall J, Schmidtchen A.

PLoS One. 2011 Jan 27;6(1):e16400. doi: 10.1371/journal.pone.0016400.

Supplemental Content

Support Center