Format
Sort by
Items per page

Send to

Choose Destination

Links from PubMed

Items: 1 to 20 of 87

1.

First use and limitations of Magmaris® bioresorbable stenting in a low birth weight infant with native aortic coarctation.

Sallmon H, Berger F, Cho MY, Opgen-Rhein B.

Catheter Cardiovasc Interv. 2019 Jun 1;93(7):1340-1343. doi: 10.1002/ccd.28300. Epub 2019 Apr 19.

PMID:
31001884
2.

Early outcome of magnesium bioresorbable scaffold implantation in acute coronary syndrome-the initial report from the Magmaris-ACS registry.

Wlodarczak A, Lanocha M, Jastrzebski A, Pecherzewski M, Szudrowicz M, Jastrzebski W, Nawrot J, Lesiak M.

Catheter Cardiovasc Interv. 2019 Apr 1;93(5):E287-E292. doi: 10.1002/ccd.28036. Epub 2018 Dec 10.

PMID:
30537203
3.

Comparison of Acute Thrombogenicity for Metallic and Polymeric Bioabsorbable Scaffolds: Magmaris Versus Absorb in a Porcine Arteriovenous Shunt Model.

Waksman R, Lipinski MJ, Acampado E, Cheng Q, Adams L, Torii S, Gai J, Torguson R, Hellinga DM, Westman PC, Joner M, Zumstein P, Kolodgie FD, Virmani R.

Circ Cardiovasc Interv. 2017 Aug;10(8). pii: e004762. doi: 10.1161/CIRCINTERVENTIONS.116.004762.

PMID:
28801538
4.

Second-generation magnesium scaffold Magmaris: device design and preclinical evaluation in a porcine coronary artery model.

Waksman R, Zumstein P, Pritsch M, Wittchow E, Haude M, Lapointe-Corriveau C, Leclerc G, Joner M.

EuroIntervention. 2017 Jul 20;13(4):440-449. doi: 10.4244/EIJ-D-16-00915.

5.

Serial invasive imaging follow-up of the first clinical experience with the Magmaris magnesium bioresorbable scaffold.

Tovar Forero MN, van Zandvoort L, Masdjedi K, Diletti R, Wilschut J, de Jaegere PP, Zijlstra F, Van Mieghem NM, Daemen J.

Catheter Cardiovasc Interv. 2019 Apr 29. doi: 10.1002/ccd.28304. [Epub ahead of print]

PMID:
31033171
6.

Primary coronary stent implantation is a feasible bridging therapy to surgery in very low birth weight infants with critical aortic coarctation.

Stegeman R, Breur JMPJ, Heuser J, Jansen NJG, de Vries WB, Vijlbrief DC, Molenschot MMC, Haas F, Krings GJ.

Int J Cardiol. 2018 Jun 15;261:62-65. doi: 10.1016/j.ijcard.2018.03.009. Epub 2018 Mar 8.

7.

Effect of non-compliant balloon postdilatation on magnesium-based bioresorbable vascular scaffolds.

Blachutzik F, Achenbach S, Tröbs M, Marwan M, Weissner M, Nef H, Schlundt C.

Catheter Cardiovasc Interv. 2019 Feb 1;93(2):202-207. doi: 10.1002/ccd.27794. Epub 2018 Sep 9.

PMID:
30196573
8.

Magnesium 2000 postmarket evaluation: Guideline adherence and intraprocedural performance of a sirolimus-eluting resorbable magnesium scaffold.

Wlodarczak A, Garcia LAI, Karjalainen PP, Komócsi A, Pisano F, Richter S, Lanocha M, Rumoroso JR, Leung KF.

Cardiovasc Revasc Med. 2019 Feb 10. pii: S1553-8389(19)30108-3. doi: 10.1016/j.carrev.2019.02.003. [Epub ahead of print]

9.

Surgical versus percutaneous treatment of aortic coarctation: new standards in an era of transcatheter repair.

Luijendijk P, Bouma BJ, Groenink M, Boekholdt M, Hazekamp MG, Blom NA, Koolbergen DR, de Winter RJ, Mulder BJ.

Expert Rev Cardiovasc Ther. 2012 Dec;10(12):1517-31. doi: 10.1586/erc.12.158. Review.

PMID:
23253276
10.

Stent Angioplasty for Critical Native Aortic Coarctation in Three Infants: Up to 15-Year Follow-Up Without Surgical Intervention and Review of the Literature.

Arfi AM, Galal MO, Kouatli A, Baho H, Abozeid H, Al Ata J.

Pediatr Cardiol. 2018 Dec;39(8):1501-1513. doi: 10.1007/s00246-018-1922-8. Epub 2018 Jun 12.

PMID:
29948027
11.

Percutaneous interventions on severe coarctation of the aorta: a 21-year experience.

Suárez de Lezo J, Pan M, Romero M, Segura J, Pavlovic D, Ojeda S, Algar J, Ribes R, Lafuente M, Lopez-Pujol J.

Pediatr Cardiol. 2005 Mar-Apr;26(2):176-89.

PMID:
15868319
12.

Stent angioplasty: an effective alternative in selected infants with critical native aortic coarctation.

Al-Ata J, Arfi AM, Hussain A, Kouatly A, Galal MO.

Pediatr Cardiol. 2007 May-Jun;28(3):183-92. Epub 2007 Apr 24.

PMID:
17457637
13.

Percutaneous balloon angioplasty for severe native aortic coarctation in young infants less than 6 months: medium- to long-term follow-up.

He L, Liu F, Wu L, Qi CH, Zhang LF, Huang GY.

Chin Med J (Engl). 2015 Apr 20;128(8):1021-5. doi: 10.4103/0366-6999.155069.

14.

Comparison of surgical and interventional therapy of native and recurrent aortic coarctation regarding different age groups during childhood.

Früh S, Knirsch W, Dodge-Khatami A, Dave H, Prêtre R, Kretschmar O.

Eur J Cardiothorac Surg. 2011 Jun;39(6):898-904. doi: 10.1016/j.ejcts.2010.09.048. Epub 2010 Dec 18. Erratum in: Eur J Cardiothorac Surg. 2011 Oct;40(4):1035.

15.
16.

Cheatham-Platinum stent for native and recurrent aortic coarctation in children and adults: immediate and early follow-up results.

Erdem A, Akdeniz C, Sarıtaş T, Erol N, Demir F, Karaci AR, Yalçın Y, Celebi A.

Anadolu Kardiyol Derg. 2011 Aug;11(5):441-9. doi: 10.5152/akd.2011.112. Epub 2011 Jun 28.

17.

In vitro performance investigation of bioresorbable scaffolds - Standard tests for vascular stents and beyond.

Schmidt W, Behrens P, Brandt-Wunderlich C, Siewert S, Grabow N, Schmitz KP.

Cardiovasc Revasc Med. 2016 Sep;17(6):375-83. doi: 10.1016/j.carrev.2016.05.001. Epub 2016 May 13.

PMID:
27266902
18.

Recurrent coarctation: interventional techniques and results.

Saxena A.

World J Pediatr Congenit Heart Surg. 2015 Apr;6(2):257-65. doi: 10.1177/2150135114566099.

PMID:
25870345
19.

Magmaris: a new generation metallic sirolimus-eluting fully bioresorbable scaffold: present status and future perspectives.

Rapetto C, Leoncini M.

J Thorac Dis. 2017 Aug;9(Suppl 9):S903-S913. doi: 10.21037/jtd.2017.06.34. Review.

20.

Supplemental Content

Support Center