Format
Sort by
Items per page

Send to

Choose Destination

Links from PubMed

Items: 1 to 20 of 103

1.

Restoration of FVIII expression by targeted gene insertion in the FVIII locus in hemophilia A patient-derived iPSCs.

Sung JJ, Park CY, Leem JW, Cho MS, Kim DW.

Exp Mol Med. 2019 Apr 17;51(4):45. doi: 10.1038/s12276-019-0243-1.

2.

Targeted genome engineering in human induced pluripotent stem cells from patients with hemophilia B using the CRISPR-Cas9 system.

Lyu C, Shen J, Wang R, Gu H, Zhang J, Xue F, Liu X, Liu W, Fu R, Zhang L, Li H, Zhang X, Cheng T, Yang R, Zhang L.

Stem Cell Res Ther. 2018 Apr 6;9(1):92. doi: 10.1186/s13287-018-0839-8.

3.

Universal Correction of Blood Coagulation Factor VIII in Patient-Derived Induced Pluripotent Stem Cells Using CRISPR/Cas9.

Park CY, Sung JJ, Cho SR, Kim J, Kim DW.

Stem Cell Reports. 2019 Jun 11;12(6):1242-1249. doi: 10.1016/j.stemcr.2019.04.016. Epub 2019 May 16.

4.

CRISPR/Cas9-mediated gene correction in hemophilia B patient-derived iPSCs.

Morishige S, Mizuno S, Ozawa H, Nakamura T, Mazahery A, Nomura K, Seki R, Mouri F, Osaki K, Yamamura K, Okamura T, Nagafuji K.

Int J Hematol. 2020 Feb;111(2):225-233. doi: 10.1007/s12185-019-02765-0. Epub 2019 Oct 29.

PMID:
31664646
5.

Designer nuclease-mediated gene correction via homology-directed repair in an in vitro model of canine hemophilia B.

Bergmann T, Ehrke-Schulz E, Gao J, Schiwon M, Schildgen V, David S, Schildgen O, Ehrhardt A.

J Gene Med. 2018 May;20(5):e3020. doi: 10.1002/jgm.3020. Epub 2018 May 3.

PMID:
29608237
6.

ssODN-Mediated In-Frame Deletion with CRISPR/Cas9 Restores FVIII Function in Hemophilia A-Patient-Derived iPSCs and ECs.

Hu Z, Zhou M, Wu Y, Li Z, Liu X, Wu L, Liang D.

Mol Ther Nucleic Acids. 2019 Sep 6;17:198-209. doi: 10.1016/j.omtn.2019.05.019. Epub 2019 Jun 5.

7.

Paired CRISPR/Cas9 Nickases Mediate Efficient Site-Specific Integration of F9 into rDNA Locus of Mouse ESCs.

Wang Y, Zhao J, Duan N, Liu W, Zhang Y, Zhou M, Hu Z, Feng M, Liu X, Wu L, Li Z, Liang D.

Int J Mol Sci. 2018 Oct 5;19(10). pii: E3035. doi: 10.3390/ijms19103035.

8.

Efficient and allele-specific genome editing of disease loci in human iPSCs.

Smith C, Abalde-Atristain L, He C, Brodsky BR, Braunstein EM, Chaudhari P, Jang YY, Cheng L, Ye Z.

Mol Ther. 2015 Mar;23(3):570-7. doi: 10.1038/mt.2014.226. Epub 2014 Nov 24.

9.

Targeting of the human F8 at the multicopy rDNA locus in Hemophilia A patient-derived iPSCs using TALENickases.

Pang J, Wu Y, Li Z, Hu Z, Wang X, Hu X, Wang X, Liu X, Zhou M, Liu B, Wang Y, Feng M, Liang D.

Biochem Biophys Res Commun. 2016 Mar 25;472(1):144-9. doi: 10.1016/j.bbrc.2016.02.083. Epub 2016 Feb 24.

PMID:
26921444
10.

Correction of Hirschsprung-Associated Mutations in Human Induced Pluripotent Stem Cells Via Clustered Regularly Interspaced Short Palindromic Repeats/Cas9, Restores Neural Crest Cell Function.

Lai FP, Lau ST, Wong JK, Gui H, Wang RX, Zhou T, Lai WH, Tse HF, Tam PK, Garcia-Barcelo MM, Ngan ES.

Gastroenterology. 2017 Jul;153(1):139-153.e8. doi: 10.1053/j.gastro.2017.03.014. Epub 2017 Mar 23.

PMID:
28342760
11.

Targeted inversion and reversion of the blood coagulation factor 8 gene in human iPS cells using TALENs.

Park CY, Kim J, Kweon J, Son JS, Lee JS, Yoo JE, Cho SR, Kim JH, Kim JS, Kim DW.

Proc Natl Acad Sci U S A. 2014 Jun 24;111(25):9253-8. doi: 10.1073/pnas.1323941111. Epub 2014 Jun 9.

12.

Modeling of hemophilia A using patient-specific induced pluripotent stem cells derived from urine cells.

Jia B, Chen S, Zhao Z, Liu P, Cai J, Qin D, Du J, Wu C, Chen Q, Cai X, Zhang H, Yu Y, Pei D, Zhong M, Pan G.

Life Sci. 2014 Jul 11;108(1):22-9. doi: 10.1016/j.lfs.2014.05.004. Epub 2014 May 13.

PMID:
24834837
13.

In situ genetic correction of the sickle cell anemia mutation in human induced pluripotent stem cells using engineered zinc finger nucleases.

Sebastiano V, Maeder ML, Angstman JF, Haddad B, Khayter C, Yeo DT, Goodwin MJ, Hawkins JS, Ramirez CL, Batista LF, Artandi SE, Wernig M, Joung JK.

Stem Cells. 2011 Nov;29(11):1717-26. doi: 10.1002/stem.718.

14.

Production of Gene-Corrected Adult Beta Globin Protein in Human Erythrocytes Differentiated from Patient iPSCs After Genome Editing of the Sickle Point Mutation.

Huang X, Wang Y, Yan W, Smith C, Ye Z, Wang J, Gao Y, Mendelsohn L, Cheng L.

Stem Cells. 2015 May;33(5):1470-9. doi: 10.1002/stem.1969.

15.

Improved hematopoietic differentiation efficiency of gene-corrected beta-thalassemia induced pluripotent stem cells by CRISPR/Cas9 system.

Song B, Fan Y, He W, Zhu D, Niu X, Wang D, Ou Z, Luo M, Sun X.

Stem Cells Dev. 2015 May 1;24(9):1053-65. doi: 10.1089/scd.2014.0347. Epub 2015 Feb 5.

PMID:
25517294
16.

Precise Genome Modification via Sequence-Specific Nucleases-Mediated Gene Targeting for Crop Improvement.

Sun Y, Li J, Xia L.

Front Plant Sci. 2016 Dec 20;7:1928. doi: 10.3389/fpls.2016.01928. eCollection 2016. Review.

17.

Hemophilia A ameliorated in mice by CRISPR-based in vivo genome editing of human Factor VIII.

Chen H, Shi M, Gilam A, Zheng Q, Zhang Y, Afrikanova I, Li J, Gluzman Z, Jiang R, Kong LJ, Chen-Tsai RY.

Sci Rep. 2019 Nov 14;9(1):16838. doi: 10.1038/s41598-019-53198-y.

18.

Site-Specific Genome Engineering in Human Pluripotent Stem Cells.

Merkert S, Martin U.

Int J Mol Sci. 2016 Jun 24;17(7). pii: E1000. doi: 10.3390/ijms17071000. Review.

19.

Gene Editing in Human Pluripotent Stem Cells: Choosing the Correct Path.

Singh AM, Adjan Steffey VV, Yeshi T, Allison DW.

J Stem Cell Regen Biol. 2015;1(1). pii: http://www.ommegaonline.org/article-details/Gene-Editing-in-Human-Pluripotent-Stem-Cells---Choosing-the-Correct-Path/630. Epub 2015 Nov 5.

20.

Applications of Alternative Nucleases in the Age of CRISPR/Cas9.

Guha TK, Edgell DR.

Int J Mol Sci. 2017 Nov 29;18(12). pii: E2565. doi: 10.3390/ijms18122565. Review.

Supplemental Content

Support Center