Format
Sort by
Items per page

Send to

Choose Destination

Links from PubMed

Items: 1 to 20 of 93

1.

Genome-wide meta-analysis identifies multiple novel loci associated with serum uric acid levels in Japanese individuals.

Nakatochi M, Kanai M, Nakayama A, Hishida A, Kawamura Y, Ichihara S, Akiyama M, Ikezaki H, Furusyo N, Shimizu S, Yamamoto K, Hirata M, Okada R, Kawai S, Kawaguchi M, Nishida Y, Shimanoe C, Ibusuki R, Takezaki T, Nakajima M, Takao M, Ozaki E, Matsui D, Nishiyama T, Suzuki S, Takashima N, Kita Y, Endoh K, Kuriki K, Uemura H, Arisawa K, Oze I, Matsuo K, Nakamura Y, Mikami H, Tamura T, Nakashima H, Nakamura T, Kato N, Matsuda K, Murakami Y, Matsubara T, Naito M, Kubo M, Kamatani Y, Shinomiya N, Yokota M, Wakai K, Okada Y, Matsuo H.

Commun Biol. 2019 Apr 8;2:115. doi: 10.1038/s42003-019-0339-0. eCollection 2019.

2.

Genome-wide association study for serum urate concentrations and gout among African Americans identifies genomic risk loci and a novel URAT1 loss-of-function allele.

Tin A, Woodward OM, Kao WH, Liu CT, Lu X, Nalls MA, Shriner D, Semmo M, Akylbekova EL, Wyatt SB, Hwang SJ, Yang Q, Zonderman AB, Adeyemo AA, Palmer C, Meng Y, Reilly M, Shlipak MG, Siscovick D, Evans MK, Rotimi CN, Flessner MF, Köttgen M, Cupples LA, Fox CS, Köttgen A; CARe and CHARGE Consortia.

Hum Mol Genet. 2011 Oct 15;20(20):4056-68. doi: 10.1093/hmg/ddr307. Epub 2011 Jul 18.

3.

Genetics of gout.

Choi HK, Zhu Y, Mount DB.

Curr Opin Rheumatol. 2010 Mar;22(2):144-51. doi: 10.1097/BOR.0b013e32833645e8. Review.

PMID:
20110790
4.

ABCG2/BCRP dysfunction as a major cause of gout.

Matsuo H, Takada T, Ichida K, Nakamura T, Nakayama A, Suzuki H, Hosoya T, Shinomiya N.

Nucleosides Nucleotides Nucleic Acids. 2011 Dec;30(12):1117-28. doi: 10.1080/15257770.2011.633954.

PMID:
22132966
5.

Meta-analysis of 28,141 individuals identifies common variants within five new loci that influence uric acid concentrations.

Kolz M, Johnson T, Sanna S, Teumer A, Vitart V, Perola M, Mangino M, Albrecht E, Wallace C, Farrall M, Johansson A, Nyholt DR, Aulchenko Y, Beckmann JS, Bergmann S, Bochud M, Brown M, Campbell H; EUROSPAN Consortium, Connell J, Dominiczak A, Homuth G, Lamina C, McCarthy MI; ENGAGE Consortium, Meitinger T, Mooser V, Munroe P, Nauck M, Peden J, Prokisch H, Salo P, Salomaa V, Samani NJ, Schlessinger D, Uda M, Völker U, Waeber G, Waterworth D, Wang-Sattler R, Wright AF, Adamski J, Whitfield JB, Gyllensten U, Wilson JF, Rudan I, Pramstaller P, Watkins H; PROCARDIS Consortium, Doering A, Wichmann HE; KORA Study, Spector TD, Peltonen L, Völzke H, Nagaraja R, Vollenweider P, Caulfield M; WTCCC, Illig T, Gieger C.

PLoS Genet. 2009 Jun;5(6):e1000504. doi: 10.1371/journal.pgen.1000504. Epub 2009 Jun 5.

6.

GWAS of clinically defined gout and subtypes identifies multiple susceptibility loci that include urate transporter genes.

Nakayama A, Nakaoka H, Yamamoto K, Sakiyama M, Shaukat A, Toyoda Y, Okada Y, Kamatani Y, Nakamura T, Takada T, Inoue K, Yasujima T, Yuasa H, Shirahama Y, Nakashima H, Shimizu S, Higashino T, Kawamura Y, Ogata H, Kawaguchi M, Ohkawa Y, Danjoh I, Tokumasu A, Ooyama K, Ito T, Kondo T, Wakai K, Stiburkova B, Pavelka K, Stamp LK, Dalbeth N; Eurogout Consortium, Sakurai Y, Suzuki H, Hosoyamada M, Fujimori S, Yokoo T, Hosoya T, Inoue I, Takahashi A, Kubo M, Ooyama H, Shimizu T, Ichida K, Shinomiya N, Merriman TR, Matsuo H; Eurogout Consortium.

Ann Rheum Dis. 2017 May;76(5):869-877. doi: 10.1136/annrheumdis-2016-209632. Epub 2016 Nov 29.

7.

Genome-wide association study of clinically defined gout identifies multiple risk loci and its association with clinical subtypes.

Matsuo H, Yamamoto K, Nakaoka H, Nakayama A, Sakiyama M, Chiba T, Takahashi A, Nakamura T, Nakashima H, Takada Y, Danjoh I, Shimizu S, Abe J, Kawamura Y, Terashige S, Ogata H, Tatsukawa S, Yin G, Okada R, Morita E, Naito M, Tokumasu A, Onoue H, Iwaya K, Ito T, Takada T, Inoue K, Kato Y, Nakamura Y, Sakurai Y, Suzuki H, Kanai Y, Hosoya T, Hamajima N, Inoue I, Kubo M, Ichida K, Ooyama H, Shimizu T, Shinomiya N.

Ann Rheum Dis. 2016 Apr;75(4):652-9. doi: 10.1136/annrheumdis-2014-206191. Epub 2015 Feb 2.

8.

The frequency of single nucleotide polymorphisms and their association with uric acid concentration based on data from genome-wide association studies in the Korean population.

Son CN, Bang SY, Cho SK, Sung YK, Kim TH, Bae SC, Jun JB.

Rheumatol Int. 2014 Jun;34(6):777-83. doi: 10.1007/s00296-013-2939-1. Epub 2014 Jan 10.

PMID:
24408252
9.

Patients with gout differ from healthy subjects in renal response to changes in serum uric acid.

Liu S, Perez-Ruiz F, Miner JN.

Joint Bone Spine. 2017 Mar;84(2):183-188. doi: 10.1016/j.jbspin.2016.04.007. Epub 2016 Jun 17.

PMID:
27324603
10.

Effects of multiple genetic loci on the pathogenesis from serum urate to gout.

Dong Z, Zhou J, Jiang S, Li Y, Zhao D, Yang C, Ma Y, Wang Y, He H, Ji H, Yang Y, Wang X, Xu X, Pang Y, Zou H, Jin L, Wang J.

Sci Rep. 2017 Mar 2;7:43614. doi: 10.1038/srep43614.

11.

Overview of Serum Uric Acid Treatment Targets in Gout: Why Less Than 6 mg/dL?

Ruoff G, Edwards NL.

Postgrad Med. 2016 Sep;128(7):706-15. doi: 10.1080/00325481.2016.1221732. Epub 2016 Aug 25. Review.

PMID:
27558643
12.

The genetics of hyperuricaemia and gout.

Reginato AM, Mount DB, Yang I, Choi HK.

Nat Rev Rheumatol. 2012 Oct;8(10):610-21. doi: 10.1038/nrrheum.2012.144. Epub 2012 Sep 4. Review.

13.

An update on the genetic architecture of hyperuricemia and gout.

Merriman TR.

Arthritis Res Ther. 2015 Apr 10;17:98. doi: 10.1186/s13075-015-0609-2. Review.

14.

NPT1/SLC17A1 is a renal urate exporter in humans and its common gain-of-function variant decreases the risk of renal underexcretion gout.

Chiba T, Matsuo H, Kawamura Y, Nagamori S, Nishiyama T, Wei L, Nakayama A, Nakamura T, Sakiyama M, Takada T, Taketani Y, Suma S, Naito M, Oda T, Kumagai H, Moriyama Y, Ichida K, Shimizu T, Kanai Y, Shinomiya N.

Arthritis Rheumatol. 2015 Jan;67(1):281-7. doi: 10.1002/art.38884.

15.

Common variants in the SLC28A2 gene are associated with serum uric acid level and hyperuricemia and gout in Han Chinese.

Zhou Z, Li Z, Wang C, Li X, Cheng X, Li C, Shi Y.

Hereditas. 2019 Jan 16;156:4. doi: 10.1186/s41065-018-0078-0. eCollection 2019.

16.

Is tea consumption associated with the serum uric acid level, hyperuricemia or the risk of gout? A systematic review and meta-analysis.

Zhang Y, Cui Y, Li XA, Li LJ, Xie X, Huang YZ, Deng YH, Zeng C, Lei GH.

BMC Musculoskelet Disord. 2017 Feb 28;18(1):95. doi: 10.1186/s12891-017-1456-x. Review.

17.

Genome wide association study of uric acid in Indian population and interaction of identified variants with Type 2 diabetes.

Giri AK, Banerjee P, Chakraborty S, Kauser Y, Undru A, Roy S, Parekatt V, Ghosh S, Tandon N, Bharadwaj D.

Sci Rep. 2016 Feb 23;6:21440. doi: 10.1038/srep21440.

18.

Heritability and Genome-Wide Association Analyses of Serum Uric Acid in Middle and Old-Aged Chinese Twins.

Wang W, Zhang D, Xu C, Wu Y, Duan H, Li S, Tan Q.

Front Endocrinol (Lausanne). 2018 Mar 6;9:75. doi: 10.3389/fendo.2018.00075. eCollection 2018.

19.

The effects of URAT1/SLC22A12 nonfunctional variants, R90H and W258X, on serum uric acid levels and gout/hyperuricemia progression.

Sakiyama M, Matsuo H, Shimizu S, Nakashima H, Nakamura T, Nakayama A, Higashino T, Naito M, Suma S, Hishida A, Satoh T, Sakurai Y, Takada T, Ichida K, Ooyama H, Shimizu T, Shinomiya N.

Sci Rep. 2016 Jan 29;6:20148. doi: 10.1038/srep20148.

20.

Renal excretion is a cause of decreased serum uric acid during acute gout.

Zhao T, Lv X, Cao L, Guo M, Zheng S, Xue Y, Zou H, Wan W, Zhu X.

Int J Rheum Dis. 2018 Sep;21(9):1723-1727. doi: 10.1111/1756-185X.13348.

PMID:
30345643

Supplemental Content

Support Center