Format
Sort by
Items per page

Send to

Choose Destination

Links from PubMed

Items: 1 to 20 of 70

1.

Genetic mutational status of genes regulating epigenetics: Role of the histone methyltransferase KMT2D in triple negative breast tumors.

Morcillo-Garcia S, Noblejas-Lopez MDM, Nieto-Jimenez C, Perez-Peña J, Nuncia-Cantarero M, Győrffy B, Amir E, Pandiella A, Galan-Moya EM, Ocana A.

PLoS One. 2019 Apr 16;14(4):e0209134. doi: 10.1371/journal.pone.0209134. eCollection 2019.

2.

Analysis of the role of mutations in the KMT2D histone lysine methyltransferase in bladder cancer.

Ding B, Yan L, Zhang Y, Wang Z, Zhang Y, Xia D, Ye Z, Xu H.

FEBS Open Bio. 2019 Feb 21;9(4):693-706. doi: 10.1002/2211-5463.12600. eCollection 2019 Apr.

3.

The histone lysine methyltransferase KMT2D sustains a gene expression program that represses B cell lymphoma development.

Ortega-Molina A, Boss IW, Canela A, Pan H, Jiang Y, Zhao C, Jiang M, Hu D, Agirre X, Niesvizky I, Lee JE, Chen HT, Ennishi D, Scott DW, Mottok A, Hother C, Liu S, Cao XJ, Tam W, Shaknovich R, Garcia BA, Gascoyne RD, Ge K, Shilatifard A, Elemento O, Nussenzweig A, Melnick AM, Wendel HG.

Nat Med. 2015 Oct;21(10):1199-208. doi: 10.1038/nm.3943. Epub 2015 Sep 14.

4.

Lysine methyltransferase 2D regulates pancreatic carcinogenesis through metabolic reprogramming.

Koutsioumpa M, Hatziapostolou M, Polytarchou C, Tolosa EJ, Almada LL, Mahurkar-Joshi S, Williams J, Tirado-Rodriguez AB, Huerta-Yepez S, Karavias D, Kourea H, Poultsides GA, Struhl K, Dawson DW, Donahue TR, Fernández-Zapico ME, Iliopoulos D.

Gut. 2019 Jul;68(7):1271-1286. doi: 10.1136/gutjnl-2017-315690. Epub 2018 Oct 18.

5.

Histone-modifier gene expression profiles are associated with pathological and clinical outcomes in human breast cancer.

Patani N, Jiang WG, Newbold RF, Mokbel K.

Anticancer Res. 2011 Dec;31(12):4115-25.

PMID:
22199269
6.

KMT2D regulates specific programs in heart development via histone H3 lysine 4 di-methylation.

Ang SY, Uebersohn A, Spencer CI, Huang Y, Lee JE, Ge K, Bruneau BG.

Development. 2016 Mar 1;143(5):810-21. doi: 10.1242/dev.132688.

7.

MLL2/KMT2D and MLL3/KMT2C expression correlates with disease progression and response to imatinib mesylate in chronic myeloid leukemia.

Rabello DDA, Ferreira VDDS, Berzoti-Coelho MG, Burin SM, Magro CL, Cacemiro MDC, Simões BP, Saldanha-Araujo F, de Castro FA, Pittella-Silva F.

Cancer Cell Int. 2018 Feb 20;18:26. doi: 10.1186/s12935-018-0523-1. eCollection 2018.

8.

Precocious neuronal differentiation and disrupted oxygen responses in Kabuki syndrome.

Carosso GA, Boukas L, Augustin JJ, Nguyen HN, Winer BL, Cannon GH, Robertson JD, Zhang L, Hansen KD, Goff LA, Bjornsson HT.

JCI Insight. 2019 Oct 17;4(20). pii: 129375. doi: 10.1172/jci.insight.129375.

10.

Aberrant expression of SETD1A promotes survival and migration of estrogen receptor α-positive breast cancer cells.

Jin ML, Kim YW, Jin HL, Kang H, Lee EK, Stallcup MR, Jeong KW.

Int J Cancer. 2018 Dec 1;143(11):2871-2883. doi: 10.1002/ijc.31853. Epub 2018 Oct 4.

11.

COMPASS Ascending: Emerging clues regarding the roles of MLL3/KMT2C and MLL2/KMT2D proteins in cancer.

Fagan RJ, Dingwall AK.

Cancer Lett. 2019 Aug 28;458:56-65. doi: 10.1016/j.canlet.2019.05.024. Epub 2019 May 22.

PMID:
31128216
12.

Association between histone lysine methyltransferase KMT2C mutation and clinicopathological factors in breast cancer.

Chen X, Zhang G, Chen B, Wang Y, Guo L, Cao L, Ren C, Wen L, Liao N.

Biomed Pharmacother. 2019 Aug;116:108997. doi: 10.1016/j.biopha.2019.108997. Epub 2019 May 27.

13.

Loss of function of Kmt2d, a gene mutated in Kabuki syndrome, affects heart development in Xenopus laevis.

Schwenty-Lara J, Nürnberger A, Borchers A.

Dev Dyn. 2019 Jun;248(6):465-476. doi: 10.1002/dvdy.39. Epub 2019 May 1.

PMID:
30980591
14.

Loss of KMT2D induces prostate cancer ROS-mediated DNA damage by suppressing the enhancer activity and DNA binding of antioxidant transcription factor FOXO3.

Lv S, Wen H, Shan X, Li J, Wu Y, Yu X, Huang W, Wei Q.

Epigenetics. 2019 Dec;14(12):1194-1208. doi: 10.1080/15592294.2019.1634985. Epub 2019 Jun 28.

PMID:
31232159
15.

KMT2D inhibits the growth and metastasis of bladder Cancer cells by maintaining the tumor suppressor genes.

Sun P, Wu T, Sun X, Cui Z, Zhang H, Xia Q, Zhang D.

Biomed Pharmacother. 2019 Jul;115:108924. doi: 10.1016/j.biopha.2019.108924. Epub 2019 May 14.

16.

Epigenetic repression of phosphatidylethanolamine N-methyltransferase (PEMT) in BRCA1-mutated breast cancer.

Li D, Bi FF, Chen NN, Cao JM, Sun WP, Zhou YM, Cao C, Li CY, Yang Q.

Oncotarget. 2014 Mar 15;5(5):1315-25.

17.

SETD2 histone modifier loss in aggressive GI stromal tumours.

Huang KK, McPherson JR, Tay ST, Das K, Tan IB, Ng CC, Chia NY, Zhang SL, Myint SS, Hu L, Rajasegaran V, Huang D, Loh JL, Gan A, Sairi AN, Sam XX, Dominguez LT, Lee M, Soo KC, Ooi LL, Ong HS, Chung A, Chow PK, Wong WK, Selvarajan S, Ong CK, Lim KH, Nandi T, Rozen S, Teh BT, Quek R, Tan P.

Gut. 2016 Dec;65(12):1960-1972. doi: 10.1136/gutjnl-2015-309482. Epub 2015 Sep 3.

PMID:
26338826
18.

Epigenetic silencing of CREB3L1 by DNA methylation is associated with high-grade metastatic breast cancers with poor prognosis and is prevalent in triple negative breast cancers.

Ward AK, Mellor P, Smith SE, Kendall S, Just NA, Vizeacoumar FS, Sarker S, Phillips Z, Alvi R, Saxena A, Vizeacoumar FJ, Carlsen SA, Anderson DH.

Breast Cancer Res. 2016 Jan 25;18(1):12. doi: 10.1186/s13058-016-0672-x.

19.
20.

BRCA1-like signature in triple negative breast cancer: Molecular and clinical characterization reveals subgroups with therapeutic potential.

Severson TM, Peeters J, Majewski I, Michaut M, Bosma A, Schouten PC, Chin SF, Pereira B, Goldgraben MA, Bismeijer T, Kluin RJ, Muris JJ, Jirström K, Kerkhoven RM, Wessels L, Caldas C, Bernards R, Simon IM, Linn S.

Mol Oncol. 2015 Oct;9(8):1528-38. doi: 10.1016/j.molonc.2015.04.011. Epub 2015 May 7.

Supplemental Content

Support Center