Format
Sort by
Items per page

Send to

Choose Destination

Links from PubMed

Items: 1 to 20 of 99

1.

In Situ Intermediates Determination and Cytotoxicological Assessment in Catalytic Oxidation of Formaldehyde: Implications for Catalyst Design and Selectivity Enhancement under Ambient Conditions.

Li H, Cui L, Lu Y, Huang Y, Cao J, Park D, Lee SC, Ho W.

Environ Sci Technol. 2019 May 7;53(9):5230-5240. doi: 10.1021/acs.est.8b06234. Epub 2019 Apr 23.

PMID:
30990308
2.
3.

Atmospheric fates of Criegee intermediates in the ozonolysis of isoprene.

Nguyen TB, Tyndall GS, Crounse JD, Teng AP, Bates KH, Schwantes RH, Coggon MM, Zhang L, Feiner P, Milller DO, Skog KM, Rivera-Rios JC, Dorris M, Olson KF, Koss A, Wild RJ, Brown SS, Goldstein AH, de Gouw JA, Brune WH, Keutsch FN, Seinfeld JH, Wennberg PO.

Phys Chem Chem Phys. 2016 Apr 21;18(15):10241-54. doi: 10.1039/c6cp00053c. Epub 2016 Mar 29.

PMID:
27021601
4.

Extremely rapid self-reaction of the simplest Criegee intermediate CH2OO and its implications in atmospheric chemistry.

Su YT, Lin HY, Putikam R, Matsui H, Lin MC, Lee YP.

Nat Chem. 2014 Jun;6(6):477-83. doi: 10.1038/nchem.1890. Epub 2014 Mar 23.

PMID:
24848232
5.

Observation of the simplest Criegee intermediate CH2OO in the gas-phase ozonolysis of ethylene.

Womack CC, Martin-Drumel MA, Brown GG, Field RW, McCarthy MC.

Sci Adv. 2015 Mar 6;1(2):e1400105. doi: 10.1126/sciadv.1400105. eCollection 2015 Mar.

6.

High-surface area mesoporous Pt/TiO₂ hollow chains for efficient formaldehyde decomposition at ambient temperature.

Qi L, Cheng B, Yu J, Ho W.

J Hazard Mater. 2016 Jan 15;301:522-30. doi: 10.1016/j.jhazmat.2015.09.026. Epub 2015 Sep 15.

PMID:
26414928
7.

Kinetics of a Criegee intermediate that would survive high humidity and may oxidize atmospheric SO2.

Huang HL, Chao W, Lin JJ.

Proc Natl Acad Sci U S A. 2015 Sep 1;112(35):10857-62. doi: 10.1073/pnas.1513149112. Epub 2015 Aug 17.

8.

Kinetic studies of C1 and C2 Criegee intermediates with SO2 using laser flash photolysis coupled with photoionization mass spectrometry and time resolved UV absorption spectroscopy.

Howes NUM, Mir ZS, Blitz MA, Hardman S, Lewis TR, Stone D, Seakins PW.

Phys Chem Chem Phys. 2018 Aug 29;20(34):22218-22227. doi: 10.1039/c8cp03115k.

PMID:
30118123
9.

Atmospheric chemistry. Direct kinetic measurement of the reaction of the simplest Criegee intermediate with water vapor.

Chao W, Hsieh JT, Chang CH, Lin JJ.

Science. 2015 Feb 13;347(6223):751-4. doi: 10.1126/science.1261549. Epub 2015 Jan 1.

10.

Kinetics of the unimolecular reaction of CH2OO and the bimolecular reactions with the water monomer, acetaldehyde and acetone under atmospheric conditions.

Berndt T, Kaethner R, Voigtländer J, Stratmann F, Pfeifle M, Reichle P, Sipilä M, Kulmala M, Olzmann M.

Phys Chem Chem Phys. 2015 Aug 14;17(30):19862-73. doi: 10.1039/c5cp02224j.

PMID:
26159709
11.

Relative Reactivity Measurements of Stabilized CH2OO, Produced by Ethene Ozonolysis, Toward Acetic Acid and Water Vapor Using Chemical Ionization Mass Spectrometry.

Yajima R, Sakamoto Y, Inomata S, Hirokawa J.

J Phys Chem A. 2017 Aug 31;121(34):6440-6449. doi: 10.1021/acs.jpca.7b05065. Epub 2017 Aug 18.

PMID:
28771360
12.

Catalytic decomposition and mechanism of formaldehyde over Pt-Al2O3 molecular sieves at room temperature.

Zhu X, Yu J, Jiang C, Cheng B.

Phys Chem Chem Phys. 2017 Mar 8;19(10):6957-6963. doi: 10.1039/c6cp08223h.

PMID:
28239732
13.

Investigation of formaldehyde oxidation over Co3O4-Ce2 and Au/Co3O4-CeO2 catalysts at room temperature: effective removal and determination of reaction mechanism.

Ma C, Wang D, Xue W, Dou B, Wang H, Hao Z.

Environ Sci Technol. 2011 Apr 15;45(8):3628-34. doi: 10.1021/es104146v. Epub 2011 Mar 4.

PMID:
21375237
14.

Direct observation of the gas-phase Criegee intermediate (CH2OO).

Taatjes CA, Meloni G, Selby TM, Trevitt AJ, Osborn DL, Percival CJ, Shallcross DE.

J Am Chem Soc. 2008 Sep 10;130(36):11883-5. doi: 10.1021/ja804165q. Epub 2008 Aug 15.

PMID:
18702490
15.

Design strategies for P-containing fuels adaptable CeO2-MoO3 catalysts for DeNO(x): significance of phosphorus resistance and N2 selectivity.

Chang H, Jong MT, Wang C, Qu R, Du Y, Li J, Hao J.

Environ Sci Technol. 2013 Oct 15;47(20):11692-9. doi: 10.1021/es4022014. Epub 2013 Sep 30.

PMID:
24024774
16.

A kinetic study of the CH2OO Criegee intermediate self-reaction, reaction with SO2 and unimolecular reaction using cavity ring-down spectroscopy.

Chhantyal-Pun R, Davey A, Shallcross DE, Percival CJ, Orr-Ewing AJ.

Phys Chem Chem Phys. 2015 Feb 7;17(5):3617-26. doi: 10.1039/c4cp04198d. Epub 2015 Jan 2.

PMID:
25553776
17.

Unimolecular decomposition kinetics of the stabilised Criegee intermediates CH2OO and CD2OO.

Stone D, Au K, Sime S, Medeiros DJ, Blitz M, Seakins PW, Decker Z, Sheps L.

Phys Chem Chem Phys. 2018 Oct 3;20(38):24940-24954. doi: 10.1039/c8cp05332d.

PMID:
30238099
18.

Photochemistry of the Simplest Criegee Intermediate, CH2OO: Photoisomerization Channel toward Dioxirane Revealed by CASPT2 Calculations and Trajectory Surface-Hopping Dynamics.

Li Y, Gong Q, Yue L, Wang W, Liu F.

J Phys Chem Lett. 2018 Mar 1;9(5):978-981. doi: 10.1021/acs.jpclett.8b00023. Epub 2018 Feb 12.

PMID:
29420035
19.

Catalytic wet air oxidation of phenol over CeO2-TiO2 catalyst in the batch reactor and the packed-bed reactor.

Yang S, Zhu W, Wang J, Chen Z.

J Hazard Mater. 2008 May 30;153(3):1248-53. Epub 2007 Sep 29.

PMID:
17980483
20.

Competition between H2O and (H2O)2 reactions with CH2OO/CH3CHOO.

Lin LC, Chang HT, Chang CH, Chao W, Smith MC, Chang CH, Min Lin J Jr, Takahashi K.

Phys Chem Chem Phys. 2016 Feb 14;18(6):4557-68. doi: 10.1039/c5cp06446e.

PMID:
26797528

Supplemental Content

Support Center