Format
Sort by
Items per page

Send to

Choose Destination

Links from PubMed

Items: 1 to 20 of 118

1.

Unmanned Aerial Vehicle-Based Phenotyping Using Morphometric and Spectral Analysis Can Quantify Responses of Wild Tomato Plants to Salinity Stress.

Johansen K, Morton MJL, Malbeteau YM, Aragon B, Al-Mashharawi SK, Ziliani MG, Angel Y, Fiene GM, Negrão SSC, Mousa MAA, Tester MA, McCabe MF.

Front Plant Sci. 2019 Mar 29;10:370. doi: 10.3389/fpls.2019.00370. eCollection 2019.

2.

Salinity tolerance in Australian wild Oryza species varies widely and matches that observed in O. sativa.

Yichie Y, Brien C, Berger B, Roberts TH, Atwell BJ.

Rice (N Y). 2018 Dec 22;11(1):66. doi: 10.1186/s12284-018-0257-7.

3.

Clustering Field-Based Maize Phenotyping of Plant-Height Growth and Canopy Spectral Dynamics Using a UAV Remote-Sensing Approach.

Han L, Yang G, Yang H, Xu B, Li Z, Yang X.

Front Plant Sci. 2018 Nov 13;9:1638. doi: 10.3389/fpls.2018.01638. eCollection 2018.

4.

A rapid monitoring of NDVI across the wheat growth cycle for grain yield prediction using a multi-spectral UAV platform.

Hassan MA, Yang M, Rasheed A, Yang G, Reynolds M, Xia X, Xiao Y, He Z.

Plant Sci. 2019 May;282:95-103. doi: 10.1016/j.plantsci.2018.10.022. Epub 2018 Nov 1.

PMID:
31003615
5.

High-Throughput Non-destructive Phenotyping of Traits that Contribute to Salinity Tolerance in Arabidopsis thaliana.

Awlia M, Nigro A, Fajkus J, Schmoeckel SM, Negrão S, Santelia D, Trtílek M, Tester M, Julkowska MM, Panzarová K.

Front Plant Sci. 2016 Sep 28;7:1414. eCollection 2016.

6.

Enhancement of Plant Productivity in the Post-Genomics Era.

Thao NP, Tran LS.

Curr Genomics. 2016 Aug;17(4):295-6. doi: 10.2174/138920291704160607182507.

7.

The estimation of crop emergence in potatoes by UAV RGB imagery.

Li B, Xu X, Han J, Zhang L, Bian C, Jin L, Liu J.

Plant Methods. 2019 Feb 12;15:15. doi: 10.1186/s13007-019-0399-7. eCollection 2019.

8.

Evaluating Maize Genotype Performance under Low Nitrogen Conditions Using RGB UAV Phenotyping Techniques.

Buchaillot ML, Gracia-Romero A, Vergara-Diaz O, Zaman-Allah MA, Tarekegne A, Cairns JE, Prasanna BM, Araus JL, Kefauver SC.

Sensors (Basel). 2019 Apr 16;19(8). pii: E1815. doi: 10.3390/s19081815.

9.

Unmanned Aerial Vehicle Remote Sensing for Field-Based Crop Phenotyping: Current Status and Perspectives.

Yang G, Liu J, Zhao C, Li Z, Huang Y, Yu H, Xu B, Yang X, Zhu D, Zhang X, Zhang R, Feng H, Zhao X, Li Z, Li H, Yang H.

Front Plant Sci. 2017 Jun 30;8:1111. doi: 10.3389/fpls.2017.01111. eCollection 2017. Review.

10.

Image-based phenotyping for non-destructive screening of different salinity tolerance traits in rice.

Hairmansis A, Berger B, Tester M, Roy SJ.

Rice (N Y). 2014 Dec;7(1):16. doi: 10.1186/s12284-014-0016-3. Epub 2014 Aug 14.

11.

Multi-Spectral Imaging from an Unmanned Aerial Vehicle Enables the Assessment of Seasonal Leaf Area Dynamics of Sorghum Breeding Lines.

Potgieter AB, George-Jaeggli B, Chapman SC, Laws K, Suárez Cadavid LA, Wixted J, Watson J, Eldridge M, Jordan DR, Hammer GL.

Front Plant Sci. 2017 Sep 8;8:1532. doi: 10.3389/fpls.2017.01532. eCollection 2017.

12.

Does Salicylic Acid (SA) Improve Tolerance to Salt Stress in Plants? A Study of SA Effects On Tomato Plant Growth, Water Dynamics, Photosynthesis, and Biochemical Parameters.

Mimouni H, Wasti S, Manaa A, Gharbi E, Chalh A, Vandoorne B, Lutts S, Ben Ahmed H.

OMICS. 2016 Mar;20(3):180-90. doi: 10.1089/omi.2015.0161. Epub 2016 Feb 24.

PMID:
26909467
13.

High-Throughput Phenotyping of Sorghum Plant Height Using an Unmanned Aerial Vehicle and Its Application to Genomic Prediction Modeling.

Watanabe K, Guo W, Arai K, Takanashi H, Kajiya-Kanegae H, Kobayashi M, Yano K, Tokunaga T, Fujiwara T, Tsutsumi N, Iwata H.

Front Plant Sci. 2017 Mar 28;8:421. doi: 10.3389/fpls.2017.00421. eCollection 2017.

14.

Rapeseed Seedling Stand Counting and Seeding Performance Evaluation at Two Early Growth Stages Based on Unmanned Aerial Vehicle Imagery.

Zhao B, Zhang J, Yang C, Zhou G, Ding Y, Shi Y, Zhang D, Xie J, Liao Q.

Front Plant Sci. 2018 Sep 21;9:1362. doi: 10.3389/fpls.2018.01362. eCollection 2018.

15.

Safety and nutritional assessment of GM plants and derived food and feed: the role of animal feeding trials.

EFSA GMO Panel Working Group on Animal Feeding Trials.

Food Chem Toxicol. 2008 Mar;46 Suppl 1:S2-70. doi: 10.1016/j.fct.2008.02.008. Epub 2008 Feb 13. Review.

PMID:
18328408
16.

The abiotic stress-responsive NAC-type transcription factor SlNAC4 regulates salt and drought tolerance and stress-related genes in tomato (Solanum lycopersicum).

Zhu M, Chen G, Zhang J, Zhang Y, Xie Q, Zhao Z, Pan Y, Hu Z.

Plant Cell Rep. 2014 Nov;33(11):1851-63. doi: 10.1007/s00299-014-1662-z. Epub 2014 Jul 26.

PMID:
25063324
17.

Salt tolerance in Solanum pennellii: antioxidant response and related QTL.

Frary A, Göl D, Keleş D, Okmen B, Pinar H, Siğva HO, Yemenicioğlu A, Doğanlar S.

BMC Plant Biol. 2010 Apr 6;10:58. doi: 10.1186/1471-2229-10-58.

18.
19.

UAV-Based Thermal Imaging for High-Throughput Field Phenotyping of Black Poplar Response to Drought.

Ludovisi R, Tauro F, Salvati R, Khoury S, Mugnozza Scarascia G, Harfouche A.

Front Plant Sci. 2017 Sep 27;8:1681. doi: 10.3389/fpls.2017.01681. eCollection 2017.

20.

Interactive Regimes of Reduced Irrigation and Salt Stress Depressed Tomato Water Use Efficiency at Leaf and Plant Scales by Affecting Leaf Physiology and Stem Sap Flow.

Yang H, Shukla MK, Mao X, Kang S, Du T.

Front Plant Sci. 2019 Feb 28;10:160. doi: 10.3389/fpls.2019.00160. eCollection 2019.

Supplemental Content

Support Center