Format
Sort by
Items per page

Send to

Choose Destination

Links from PubMed

Items: 1 to 20 of 103

1.

Suppression of Structural Change upon S1-T1 Conversion Assists the Thermally Activated Delayed Fluorescence Process in Carbazole-Benzonitrile Derivatives.

Saigo M, Miyata K, Tanaka S, Nakanotani H, Adachi C, Onda K.

J Phys Chem Lett. 2019 May 16;10(10):2475-2480. doi: 10.1021/acs.jpclett.9b00810. Epub 2019 May 2.

PMID:
30973013
2.

Evidence and mechanism of efficient thermally activated delayed fluorescence promoted by delocalized excited states.

Hosokai T, Matsuzaki H, Nakanotani H, Tokumaru K, Tsutsui T, Furube A, Nasu K, Nomura H, Yahiro M, Adachi C.

Sci Adv. 2017 May 10;3(5):e1603282. doi: 10.1126/sciadv.1603282. eCollection 2017 May.

3.

Study of Phenoxaborin Derivatives for Thermally Activated Delayed Fluorescence Emitters.

Lee GH, Kim YS.

J Nanosci Nanotechnol. 2018 Sep 1;18(9):6528-6531. doi: 10.1166/jnn.2018.15679.

PMID:
29677827
4.

Benzofuropyridine-Based Highly Efficient Thermally Activated Delayed Fluorescence Emitters.

Lee GH, Kim YS.

J Nanosci Nanotechnol. 2018 Sep 1;18(9):6635-6639. doi: 10.1166/jnn.2018.15709.

PMID:
29677849
5.

TADF Material Design: Photophysical Background and Case Studies Focusing on CuI and AgI Complexes.

Yersin H, Czerwieniec R, Shafikov MZ, Suleymanova AF.

Chemphyschem. 2017 Dec 15;18(24):3508-3535. doi: 10.1002/cphc.201700872. Epub 2017 Dec 19. Review.

PMID:
29083512
6.

Thermally activated delayed fluorescence materials towards the breakthrough of organoelectronics.

Tao Y, Yuan K, Chen T, Xu P, Li H, Chen R, Zheng C, Zhang L, Huang W.

Adv Mater. 2014 Dec 17;26(47):7931-58. doi: 10.1002/adma.201402532. Epub 2014 Sep 17. Review.

PMID:
25230116
7.

Strategy for tuning the up-conversion intersystem crossing rates in a series of organic light-emitting diodes emitters relevant for thermally activated delayed fluorescence.

Zhu Q, Feng S, Guo X, Chen X, Zhang J.

Spectrochim Acta A Mol Biomol Spectrosc. 2019 Oct 5;221:117214. doi: 10.1016/j.saa.2019.117214. Epub 2019 May 28.

PMID:
31158761
8.

Pyridine-, Pyrimidine-, and Triazine-Based Thermally Activated Delayed Fluorescence Emitters.

Lee GH, Kim YS.

J Nanosci Nanotechnol. 2018 Oct 1;18(10):7211-7215. doi: 10.1166/jnn.2018.15481.

PMID:
29954561
9.

Highly Efficient Thermally Activated Delayed Fluorescence Emitter Developed by Replacing Carbazole With 1,3,6,8-Tetramethyl-Carbazole.

Cai JL, Liu W, Wang K, Chen JX, Shi YZ, Zhang M, Zheng CJ, Tao SL, Zhang XH.

Front Chem. 2019 Jan 28;7:17. doi: 10.3389/fchem.2019.00017. eCollection 2019.

10.

Direct observation of intersystem crossing in a thermally activated delayed fluorescence copper complex in the solid state.

Bergmann L, Hedley GJ, Baumann T, Bräse S, Samuel ID.

Sci Adv. 2016 Jan 1;2(1):e1500889. doi: 10.1126/sciadv.1500889. eCollection 2016 Jan.

11.

Nonadiabatic coupling reduces the activation energy in thermally activated delayed fluorescence.

Gibson J, Penfold TJ.

Phys Chem Chem Phys. 2017 Mar 22;19(12):8428-8434. doi: 10.1039/c7cp00719a.

PMID:
28286891
12.

Recent advances on organic blue thermally activated delayed fluorescence (TADF) emitters for organic light-emitting diodes (OLEDs).

Bui TT, Goubard F, Ibrahim-Ouali M, Gigmes D, Dumur F.

Beilstein J Org Chem. 2018 Jan 30;14:282-308. doi: 10.3762/bjoc.14.18. eCollection 2018. Review.

13.

Molecular Design Tactics for Highly Efficient Thermally Activated Delayed Fluorescence Emitters for Organic Light Emitting Diodes.

Konidena RK, Lee JY.

Chem Rec. 2018 Oct 30. doi: 10.1002/tcr.201800136. [Epub ahead of print] Review.

PMID:
30375173
14.

Deep-Blue Thermally Activated Delayed Fluorescence Emitters Containing Diphenyl Sulfone Group for Organic Light Emitting Diodes.

Lee IH, Kim KJ, Kim YK, Kim YS, Shin DM.

J Nanosci Nanotechnol. 2019 Aug 1;19(8):4583-4589. doi: 10.1166/jnn.2019.16702.

PMID:
30913752
15.

"Rate-limited effect" of reverse intersystem crossing process: the key for tuning thermally activated delayed fluorescence lifetime and efficiency roll-off of organic light emitting diodes.

Cai X, Li X, Xie G, He Z, Gao K, Liu K, Chen D, Cao Y, Su SJ.

Chem Sci. 2016 Jul 1;7(7):4264-4275. doi: 10.1039/c6sc00542j. Epub 2016 Mar 15.

16.

Photophysics of thermally activated delayed fluorescence molecules.

Dias FB, Penfold TJ, Monkman AP.

Methods Appl Fluoresc. 2017 Mar 9;5(1):012001. doi: 10.1088/2050-6120/aa537e.

PMID:
28276340
17.

Highly Efficient Full-Color Thermally Activated Delayed Fluorescent Organic Light-Emitting Diodes: Extremely Low Efficiency Roll-Off Utilizing a Host with Small Singlet-Triplet Splitting.

Zhang D, Zhao C, Zhang Y, Song X, Wei P, Cai M, Duan L.

ACS Appl Mater Interfaces. 2017 Feb 8;9(5):4769-4777. doi: 10.1021/acsami.6b15272. Epub 2017 Jan 26.

PMID:
28094502
18.

Benzimidazobenzothiazole-based highly-efficient thermally activated delayed fluorescence emitters for organic light-emitting diodes: A quantum-chemical TD-DFT study.

Zhu Q, Wen K, Feng S, Guo X, Zhang J.

Spectrochim Acta A Mol Biomol Spectrosc. 2018 Mar 5;192:297-303. doi: 10.1016/j.saa.2017.11.032. Epub 2017 Nov 15.

PMID:
29156317
20.

Supplemental Content

Support Center