Format
Sort by
Items per page

Send to

Choose Destination

Links from PubMed

Items: 1 to 20 of 101

1.

Bioactive Sr(II)/Chitosan/Poly(ε-caprolactone) Scaffolds for Craniofacial Tissue Regeneration. In Vitro and In Vivo Behavior.

Rodríguez-Méndez I, Fernández-Gutiérrez M, Rodríguez-Navarrete A, Rosales-Ibáñez R, Benito-Garzón L, Vázquez-Lasa B, San Román J.

Polymers (Basel). 2018 Mar 7;10(3). pii: E279. doi: 10.3390/polym10030279.

2.

Fabrication and characterization of chitosan/OGP coated porous poly(ε-caprolactone) scaffold for bone tissue engineering.

Cui Z, Lin L, Si J, Luo Y, Wang Q, Lin Y, Wang X, Chen W.

J Biomater Sci Polym Ed. 2017 Jun;28(9):826-845. doi: 10.1080/09205063.2017.1303867. Epub 2017 Mar 14.

PMID:
28278041
3.

Bioactive nano-fibrous scaffold for vascularized craniofacial bone regeneration.

Prabha RD, Kraft DCE, Harkness L, Melsen B, Varma H, Nair PD, Kjems J, Kassem M.

J Tissue Eng Regen Med. 2018 Mar;12(3):e1537-e1548. doi: 10.1002/term.2579. Epub 2017 Dec 4.

PMID:
28967188
4.

Shish-kebab-structured poly(ε-caprolactone) nanofibers hierarchically decorated with chitosan-poly(ε-caprolactone) copolymers for bone tissue engineering.

Jing X, Mi HY, Wang XC, Peng XF, Turng LS.

ACS Appl Mater Interfaces. 2015 Apr 1;7(12):6955-65. doi: 10.1021/acsami.5b00900. Epub 2015 Mar 23.

PMID:
25761418
5.

Electrophoretic Deposition of Dexamethasone-Loaded Mesoporous Silica Nanoparticles onto Poly(L-Lactic Acid)/Poly(ε-Caprolactone) Composite Scaffold for Bone Tissue Engineering.

Qiu K, Chen B, Nie W, Zhou X, Feng W, Wang W, Chen L, Mo X, Wei Y, He C.

ACS Appl Mater Interfaces. 2016 Feb 17;8(6):4137-48. doi: 10.1021/acsami.5b11879. Epub 2016 Feb 5.

PMID:
26736029
6.

Evaluation of Strontium-Containing PCL-PDIPF Scaffolds for Bone Tissue Engineering: In Vitro and In Vivo Studies.

Lino AB, McCarthy AD, Fernández JM.

Ann Biomed Eng. 2019 Mar;47(3):902-912. doi: 10.1007/s10439-018-02183-z. Epub 2018 Dec 17.

PMID:
30560305
7.

Strontium hydroxyapatite/chitosan nanohybrid scaffolds with enhanced osteoinductivity for bone tissue engineering.

Lei Y, Xu Z, Ke Q, Yin W, Chen Y, Zhang C, Guo Y.

Mater Sci Eng C Mater Biol Appl. 2017 Mar 1;72:134-142. doi: 10.1016/j.msec.2016.11.063. Epub 2016 Nov 18.

PMID:
28024569
8.

Polycaprolactone foam functionalized with chitosan microparticles - a suitable scaffold for cartilage regeneration.

Filová E, Jakubcová B, Danilová I, KuŽelová Košťáková E, Jarošíková T, Chernyavskiy O, Hejda J, Handl M, Beznoska J, Nečas A, Rosina J, Amler E.

Physiol Res. 2016;65(1):121-31. Epub 2015 Nov 24.

9.

Strontium eluting nanofibers augment stem cell osteogenesis for bone tissue regeneration.

Meka SR, Jain S, Chatterjee K.

Colloids Surf B Biointerfaces. 2016 Oct 1;146:649-56. doi: 10.1016/j.colsurfb.2016.07.012. Epub 2016 Jul 7.

PMID:
27429299
10.

Strontium eluting graphene hybrid nanoparticles augment osteogenesis in a 3D tissue scaffold.

Kumar S, Chatterjee K.

Nanoscale. 2015 Feb 7;7(5):2023-33. doi: 10.1039/c4nr05060f.

PMID:
25553731
11.

Electrospun silk fibroin/poly(lactide-co-ε-caprolactone) nanofibrous scaffolds for bone regeneration.

Wang Z, Lin M, Xie Q, Sun H, Huang Y, Zhang D, Yu Z, Bi X, Chen J, Wang J, Shi W, Gu P, Fan X.

Int J Nanomedicine. 2016 Apr 11;11:1483-500. doi: 10.2147/IJN.S97445. eCollection 2016.

12.
13.

Chitosan-poly(butylene succinate) scaffolds and human bone marrow stromal cells induce bone repair in a mouse calvaria model.

Costa-Pinto AR, Correlo VM, Sol PC, Bhattacharya M, Srouji S, Livne E, Reis RL, Neves NM.

J Tissue Eng Regen Med. 2012 Jan;6(1):21-8. doi: 10.1002/term.391. Epub 2011 Feb 10.

PMID:
21312336
14.

Assessment of PCL/carbon material scaffolds for bone regeneration.

Wang W, Huang B, Byun JJ, Bártolo P.

J Mech Behav Biomed Mater. 2019 May;93:52-60. doi: 10.1016/j.jmbbm.2019.01.020. Epub 2019 Jan 31.

PMID:
30769234
15.

Selective laser sintering fabrication of nano-hydroxyapatite/poly-ε-caprolactone scaffolds for bone tissue engineering applications.

Xia Y, Zhou P, Cheng X, Xie Y, Liang C, Li C, Xu S.

Int J Nanomedicine. 2013;8:4197-213. doi: 10.2147/IJN.S50685. Epub 2013 Nov 1.

16.

Strontium-modified chitosan/montmorillonite composites as bone tissue engineering scaffold.

Koç Demir A, Elçin AE, Elçin YM.

Mater Sci Eng C Mater Biol Appl. 2018 Aug 1;89:8-14. doi: 10.1016/j.msec.2018.03.021. Epub 2018 Mar 22.

PMID:
29752122
17.

Clinoptilolite/PCL-PEG-PCL composite scaffolds for bone tissue engineering applications.

Pazarçeviren E, Erdemli Ö, Keskin D, Tezcaner A.

J Biomater Appl. 2017 Mar;31(8):1148-1168. doi: 10.1177/0885328216680152. Epub 2016 Nov 23.

PMID:
27881642
18.

Synthesis, Nanomechanical Characterization and Biocompatibility of a Chitosan-Graft-Poly(ε-caprolactone) Copolymer for Soft Tissue Regeneration.

Charitidis CA, Dragatogiannis DA, Milioni E, Kaliva M, Vamvakaki M, Chatzinikolaidou M.

Materials (Basel). 2019 Jan 4;12(1). pii: E150. doi: 10.3390/ma12010150.

19.

In vitro and in vivo bone formation potential of surface calcium phosphate-coated polycaprolactone and polycaprolactone/bioactive glass composite scaffolds.

Poh PSP, Hutmacher DW, Holzapfel BM, Solanki AK, Stevens MM, Woodruff MA.

Acta Biomater. 2016 Jan;30:319-333. doi: 10.1016/j.actbio.2015.11.012. Epub 2015 Nov 10.

PMID:
26563472
20.

Three-Dimensional Printing of Bone Extracellular Matrix for Craniofacial Regeneration.

Hung BP, Naved BA, Nyberg EL, Dias M, Holmes CA, Elisseeff JH, Dorafshar AH, Grayson WL.

ACS Biomater Sci Eng. 2016 Oct 10;2(10):1806-1816. Epub 2016 Apr 18.

Supplemental Content

Support Center