Format
Sort by
Items per page

Send to

Choose Destination

Links from PubMed

Items: 1 to 20 of 100

1.

Chemosynthetic symbiont with a drastically reduced genome serves as primary energy storage in the marine flatworm Paracatenula.

Jäckle O, Seah BKB, Tietjen M, Leisch N, Liebeke M, Kleiner M, Berg JS, Gruber-Vodicka HR.

Proc Natl Acad Sci U S A. 2019 Apr 23;116(17):8505-8514. doi: 10.1073/pnas.1818995116. Epub 2019 Apr 8.

2.

Paracatenula, an ancient symbiosis between thiotrophic Alphaproteobacteria and catenulid flatworms.

Gruber-Vodicka HR, Dirks U, Leisch N, Baranyi C, Stoecker K, Bulgheresi S, Heindl NR, Horn M, Lott C, Loy A, Wagner M, Ott J.

Proc Natl Acad Sci U S A. 2011 Jul 19;108(29):12078-83. doi: 10.1073/pnas.1105347108. Epub 2011 Jun 27.

3.

Acquisition of a Novel Sulfur-Oxidizing Symbiont in the Gutless Marine Worm Inanidrilus exumae.

Bergin C, Wentrup C, Brewig N, Blazejak A, Erséus C, Giere O, Schmid M, De Wit P, Dubilier N.

Appl Environ Microbiol. 2018 Mar 19;84(7). pii: e02267-17. doi: 10.1128/AEM.02267-17. Print 2018 Apr 1.

4.

Bacterial symbiosis maintenance in the asexually reproducing and regenerating flatworm Paracatenula galateia.

Dirks U, Gruber-Vodicka HR, Leisch N, Bulgheresi S, Egger B, Ladurner P, Ott JA.

PLoS One. 2012;7(4):e34709. doi: 10.1371/journal.pone.0034709. Epub 2012 Apr 3.

5.

Differential genome evolution between companion symbionts in an insect-bacterial symbiosis.

Bennett GM, McCutcheon JP, MacDonald BR, Romanovicz D, Moran NA.

MBio. 2014 Sep 30;5(5):e01697-14. doi: 10.1128/mBio.01697-14.

6.

Ongoing Transposon-Mediated Genome Reduction in the Luminous Bacterial Symbionts of Deep-Sea Ceratioid Anglerfishes.

Hendry TA, Freed LL, Fader D, Fenolio D, Sutton TT, Lopez JV.

MBio. 2018 Jun 26;9(3). pii: e01033-18. doi: 10.1128/mBio.01033-18.

7.

The Cost of Metabolic Interactions in Symbioses between Insects and Bacteria with Reduced Genomes.

Ankrah NYD, Chouaia B, Douglas AE.

MBio. 2018 Sep 25;9(5). pii: e01433-18. doi: 10.1128/mBio.01433-18.

8.

Reduced genome of the thioautotrophic intracellular symbiont in a deep-sea clam, Calyptogena okutanii.

Kuwahara H, Yoshida T, Takaki Y, Shimamura S, Nishi S, Harada M, Matsuyama K, Takishita K, Kawato M, Uematsu K, Fujiwara Y, Sato T, Kato C, Kitagawa M, Kato I, Maruyama T.

Curr Biol. 2007 May 15;17(10):881-6.

9.

Cladogenesis and Genomic Streamlining in Extracellular Endosymbionts of Tropical Stink Bugs.

Otero-Bravo A, Goffredi S, Sabree ZL.

Genome Biol Evol. 2018 Feb 1;10(2):680-693. doi: 10.1093/gbe/evy033.

10.

Insights into Symbiont Population Structure among Three Vestimentiferan Tubeworm Host Species at Eastern Pacific Spreading Centers.

Perez M, Juniper SK.

Appl Environ Microbiol. 2016 Aug 15;82(17):5197-205. doi: 10.1128/AEM.00953-16. Print 2016 Sep 1.

11.

The Bacterial Symbionts of Closely Related Hydrothermal Vent Snails With Distinct Geochemical Habitats Show Broad Similarity in Chemoautotrophic Gene Content.

Beinart RA, Luo C, Konstantinidis KT, Stewart FJ, Girguis PR.

Front Microbiol. 2019 Aug 14;10:1818. doi: 10.3389/fmicb.2019.01818. eCollection 2019.

12.

Evidence for horizontal transmission from multilocus phylogeny of deep-sea mussel (Mytilidae) symbionts.

Fontanez KM, Cavanaugh CM.

Environ Microbiol. 2014 Dec;16(12):3608-21. doi: 10.1111/1462-2920.12379. Epub 2014 Feb 20.

PMID:
24428587
13.

Extensive Thioautotrophic Gill Endosymbiont Diversity within a Single Ctena orbiculata (Bivalvia: Lucinidae) Population and Implications for Defining Host-Symbiont Specificity and Species Recognition.

Lim SJ, Alexander L, Engel AS, Paterson AT, Anderson LC, Campbell BJ.

mSystems. 2019 Aug 27;4(4). pii: e00280-19. doi: 10.1128/mSystems.00280-19.

14.

Host-symbiont co-speciation and reductive genome evolution in gut symbiotic bacteria of acanthosomatid stinkbugs.

Kikuchi Y, Hosokawa T, Nikoh N, Meng XY, Kamagata Y, Fukatsu T.

BMC Biol. 2009 Jan 15;7:2. doi: 10.1186/1741-7007-7-2.

15.

Lateral symbiont acquisition in a maternally transmitted chemosynthetic clam endosymbiosis.

Stewart FJ, Young CR, Cavanaugh CM.

Mol Biol Evol. 2008 Apr;25(4):673-87. doi: 10.1093/molbev/msn010. Epub 2008 Jan 12.

PMID:
18192696
16.

Chemosynthetic endosymbioses: adaptations to oxic-anoxic interfaces.

Stewart FJ, Newton IL, Cavanaugh CM.

Trends Microbiol. 2005 Sep;13(9):439-48. Review.

PMID:
16054816
17.

Comparative genomics of vesicomyid clam (Bivalvia: Mollusca) chemosynthetic symbionts.

Newton IL, Girguis PR, Cavanaugh CM.

BMC Genomics. 2008 Dec 4;9:585. doi: 10.1186/1471-2164-9-585.

18.

Primates, Lice and Bacteria: Speciation and Genome Evolution in the Symbionts of Hominid Lice.

Boyd BM, Allen JM, Nguyen NP, Vachaspati P, Quicksall ZS, Warnow T, Mugisha L, Johnson KP, Reed DL.

Mol Biol Evol. 2017 Jul 1;34(7):1743-1757. doi: 10.1093/molbev/msx117.

19.

Genomic Insight into Symbiosis-Induced Insect Color Change by a Facultative Bacterial Endosymbiont, "Candidatus Rickettsiella viridis".

Nikoh N, Tsuchida T, Maeda T, Yamaguchi K, Shigenobu S, Koga R, Fukatsu T.

MBio. 2018 Jun 12;9(3). pii: e00890-18. doi: 10.1128/mBio.00890-18.

20.

Microanatomy of the trophosome region of Paracatenula cf. polyhymnia (Catenulida, Platyhelminthes) and its intracellular symbionts.

Leisch N, Dirks U, Gruber-Vodicka HR, Schmid M, Sterrer W, Ott JA.

Zoomorphology. 2011 Dec;130(4):261-271. Epub 2011 Sep 14.

Supplemental Content

Support Center