Format
Sort by
Items per page

Send to

Choose Destination

Links from PubMed

Items: 1 to 20 of 109

1.

Accurate Quantitative Proteomic Analyses Using Metabolic Labeling and High Field Asymmetric Waveform Ion Mobility Spectrometry (FAIMS).

Pfammatter S, Bonneil E, McManus FP, Thibault P.

J Proteome Res. 2019 May 3;18(5):2129-2138. doi: 10.1021/acs.jproteome.9b00021. Epub 2019 Apr 17.

PMID:
30919622
2.

A Novel Differential Ion Mobility Device Expands the Depth of Proteome Coverage and the Sensitivity of Multiplex Proteomic Measurements.

Pfammatter S, Bonneil E, McManus FP, Prasad S, Bailey DJ, Belford M, Dunyach JJ, Thibault P.

Mol Cell Proteomics. 2018 Oct;17(10):2051-2067. doi: 10.1074/mcp.TIR118.000862. Epub 2018 Jul 14.

PMID:
30007914
3.

Improvement of Quantitative Measurements in Multiplex Proteomics Using High-Field Asymmetric Waveform Spectrometry.

Pfammatter S, Bonneil E, Thibault P.

J Proteome Res. 2016 Dec 2;15(12):4653-4665. Epub 2016 Oct 19.

PMID:
27723353
4.

Enhancement of mass spectrometry performance for proteomic analyses using high-field asymmetric waveform ion mobility spectrometry (FAIMS).

Bonneil E, Pfammatter S, Thibault P.

J Mass Spectrom. 2015 Nov;50(11):1181-95. doi: 10.1002/jms.3646.

PMID:
26505763
5.

Probing the complementarity of FAIMS and strong cation exchange chromatography in shotgun proteomics.

Creese AJ, Shimwell NJ, Larkins KP, Heath JK, Cooper HJ.

J Am Soc Mass Spectrom. 2013 Mar;24(3):431-43. doi: 10.1007/s13361-012-0544-2. Epub 2013 Feb 12.

6.

Nanospray FAIMS fractionation provides significant increases in proteome coverage of unfractionated complex protein digests.

Swearingen KE, Hoopmann MR, Johnson RS, Saleem RA, Aitchison JD, Moritz RL.

Mol Cell Proteomics. 2012 Apr;11(4):M111.014985. doi: 10.1074/mcp.M111.014985. Epub 2011 Dec 20.

7.

High-field asymmetric waveform ion mobility spectrometry for mass spectrometry-based proteomics.

Swearingen KE, Moritz RL.

Expert Rev Proteomics. 2012 Oct;9(5):505-17. doi: 10.1586/epr.12.50. Review.

8.

Decreased Gap Width in a Cylindrical High-Field Asymmetric Waveform Ion Mobility Spectrometry Device Improves Protein Discovery.

Swearingen KE, Winget JM, Hoopmann MR, Kusebauch U, Moritz RL.

Anal Chem. 2015 Dec 15;87(24):12230-7. doi: 10.1021/acs.analchem.5b03199. Epub 2015 Nov 25.

9.

High Field Asymmetric Waveform Ion Mobility Spectrometry in Nontargeted Bottom-up Proteomics of Dried Blood Spots.

Rosting C, Yu J, Cooper HJ.

J Proteome Res. 2018 Jun 1;17(6):1997-2004. doi: 10.1021/acs.jproteome.7b00746. Epub 2018 May 9.

10.

Gas-Phase Enrichment of Multiply Charged Peptide Ions by Differential Ion Mobility Extend the Comprehensiveness of SUMO Proteome Analyses.

Pfammatter S, Bonneil E, McManus FP, Thibault P.

J Am Soc Mass Spectrom. 2018 Jun;29(6):1111-1124. doi: 10.1007/s13361-018-1917-y. Epub 2018 Apr 5.

PMID:
29623662
11.

Characterization and Optimization of Multiplexed Quantitative Analyses Using High-Field Asymmetric-Waveform Ion Mobility Mass Spectrometry.

Schweppe DK, Prasad S, Belford MW, Navarrete-Perea J, Bailey DJ, Huguet R, Jedrychowski MP, Rad R, McAlister G, Abbatiello SE, Woulters ER, Zabrouskov V, Dunyach JJ, Paulo JA, Gygi SP.

Anal Chem. 2019 Mar 19;91(6):4010-4016. doi: 10.1021/acs.analchem.8b05399. Epub 2019 Feb 26.

PMID:
30672687
12.

Enhanced sensitivity in proteomics experiments using FAIMS coupled with a hybrid linear ion trap/Orbitrap mass spectrometer.

Saba J, Bonneil E, Pomi├Ęs C, Eng K, Thibault P.

J Proteome Res. 2009 Jul;8(7):3355-66. doi: 10.1021/pr801106a.

PMID:
19469569
13.

Large-scale analysis of peptide sequence variants: the case for high-field asymmetric waveform ion mobility spectrometry.

Creese AJ, Smart J, Cooper HJ.

Anal Chem. 2013 May 21;85(10):4836-43. doi: 10.1021/ac400646m. Epub 2013 May 6.

14.

Application of ESI-FAIMS-MS to the analysis of tryptic peptides.

Barnett DA, Ells B, Guevremont R, Purves RW.

J Am Soc Mass Spectrom. 2002 Nov;13(11):1282-91.

PMID:
12443018
15.
16.

Improvement of phosphoproteome analyses using FAIMS and decision tree fragmentation. application to the insulin signaling pathway in Drosophila melanogaster S2 cells.

Bridon G, Bonneil E, Muratore-Schroeder T, Caron-Lizotte O, Thibault P.

J Proteome Res. 2012 Feb 3;11(2):927-40. doi: 10.1021/pr200722s. Epub 2011 Dec 1.

PMID:
22059388
17.

Comprehensive Single-Shot Proteomics with FAIMS on a Hybrid Orbitrap Mass Spectrometer.

Hebert AS, Prasad S, Belford MW, Bailey DJ, McAlister GC, Abbatiello SE, Huguet R, Wouters ER, Dunyach JJ, Brademan DR, Westphall MS, Coon JJ.

Anal Chem. 2018 Aug 7;90(15):9529-9537. doi: 10.1021/acs.analchem.8b02233. Epub 2018 Jul 18.

18.

Increasing Peak Capacity in Nontargeted Omics Applications by Combining Full Scan Field Asymmetric Waveform Ion Mobility Spectrometry with Liquid Chromatography-Mass Spectrometry.

Arthur KL, Turner MA, Reynolds JC, Creaser CS.

Anal Chem. 2017 Mar 21;89(6):3452-3459. doi: 10.1021/acs.analchem.6b04315. Epub 2017 Mar 10.

PMID:
28230966
19.

Rapid Analysis of Anabolic Steroid Metabolites in Urine by Combining Field Asymmetric Waveform Ion Mobility Spectrometry with Liquid Chromatography and Mass Spectrometry.

Arthur KL, Turner MA, Brailsford AD, Kicman AT, Cowan DA, Reynolds JC, Creaser CS.

Anal Chem. 2017 Jul 18;89(14):7431-7437. doi: 10.1021/acs.analchem.7b00940. Epub 2017 Jun 30.

PMID:
28613840
20.

Online LC-FAIMS-MS/MS for the Analysis of Phosphorylation in Proteins.

Zhao H, Creese AJ, Cooper HJ.

Methods Mol Biol. 2016;1355:241-50. doi: 10.1007/978-1-4939-3049-4_16.

PMID:
26584930

Supplemental Content

Support Center