Format
Sort by
Items per page

Send to

Choose Destination

Links from PubMed

Items: 1 to 20 of 98

1.

Targeted interplay between bacterial pathogens and host autophagy.

Sudhakar P, Jacomin AC, Hautefort I, Samavedam S, Fatemian K, Ari E, Gul L, Demeter A, Jones E, Korcsmaros T, Nezis IP.

Autophagy. 2019 Mar 25:1-14. doi: 10.1080/15548627.2019.1590519. [Epub ahead of print]

PMID:
30909843
2.

CALCOCO2/NDP52 and SQSTM1/p62 differentially regulate coxsackievirus B3 propagation.

Mohamud Y, Qu J, Xue YC, Liu H, Deng H, Luo H.

Cell Death Differ. 2019 Jun;26(6):1062-1076. doi: 10.1038/s41418-018-0185-5. Epub 2018 Aug 28.

PMID:
30154446
3.

The ATG5-binding and coiled coil domains of ATG16L1 maintain autophagy and tissue homeostasis in mice independently of the WD domain required for LC3-associated phagocytosis.

Rai S, Arasteh M, Jefferson M, Pearson T, Wang Y, Zhang W, Bicsak B, Divekar D, Powell PP, Naumann R, Beraza N, Carding SR, Florey O, Mayer U, Wileman T.

Autophagy. 2019 Apr;15(4):599-612. doi: 10.1080/15548627.2018.1534507. Epub 2018 Nov 7.

4.

The cargo receptor SQSTM1 ameliorates neurofibrillary tangle pathology and spreading through selective targeting of pathological MAPT (microtubule associated protein tau).

Xu Y, Zhang S, Zheng H.

Autophagy. 2019 Apr;15(4):583-598. doi: 10.1080/15548627.2018.1532258. Epub 2018 Oct 16.

PMID:
30290707
5.

V-ATPase and osmotic imbalances activate endolysosomal LC3 lipidation.

Florey O, Gammoh N, Kim SE, Jiang X, Overholtzer M.

Autophagy. 2015;11(1):88-99. doi: 10.4161/15548627.2014.984277.

6.

Intracellular Salmonella induces aggrephagy of host endomembranes in persistent infections.

López-Montero N, Ramos-Marquès E, Risco C, García-Del Portillo F.

Autophagy. 2016 Oct 2;12(10):1886-1901. Epub 2016 Aug 2.

7.

Macrophages target Salmonella by Lc3-associated phagocytosis in a systemic infection model.

Masud S, Prajsnar TK, Torraca V, Lamers GEM, Benning M, Van Der Vaart M, Meijer AH.

Autophagy. 2019 May;15(5):796-812. doi: 10.1080/15548627.2019.1569297. Epub 2019 Jan 24.

8.

Ubiquitin-coated nanodiamonds bind to autophagy receptors for entry into the selective autophagy pathway.

Liu KK, Qiu WR, Naveen Raj E, Liu HF, Huang HS, Lin YW, Chang CJ, Chen TH, Chen C, Chang HC, Hwang JK, Chao JI.

Autophagy. 2017 Jan 2;13(1):187-200. doi: 10.1080/15548627.2016.1254864. Epub 2016 Nov 15.

9.

Defective recognition of LC3B by mutant SQSTM1/p62 implicates impairment of autophagy as a pathogenic mechanism in ALS-FTLD.

Goode A, Butler K, Long J, Cavey J, Scott D, Shaw B, Sollenberger J, Gell C, Johansen T, Oldham NJ, Searle MS, Layfield R.

Autophagy. 2016 Jul 2;12(7):1094-104. doi: 10.1080/15548627.2016.1170257. Epub 2016 May 9.

10.

Group A Streptococcus modulates RAB1- and PIK3C3 complex-dependent autophagy.

Toh H, Nozawa T, Minowa-Nozawa A, Hikichi M, Nakajima S, Aikawa C, Nakagawa I.

Autophagy. 2019 Jun 14:1-13. doi: 10.1080/15548627.2019.1628539. [Epub ahead of print]

PMID:
31177902
11.

Autophagic degradation of SQSTM1 inhibits ovarian cancer motility by decreasing DICER1 and AGO2 to induce MIRLET7A-3P.

Liao CC, Ho MY, Liang SM, Liang CM.

Autophagy. 2018;14(12):2065-2082. doi: 10.1080/15548627.2018.1501135. Epub 2018 Aug 17.

PMID:
30081720
12.

Autophagy and innate immunity: Insights from invertebrate model organisms.

Kuo CJ, Hansen M, Troemel E.

Autophagy. 2018;14(2):233-242. doi: 10.1080/15548627.2017.1389824. Epub 2018 Feb 17. Review.

13.

Molecular basis of ubiquitin recognition by the autophagy receptor CALCOCO2.

Xie X, Li F, Wang Y, Wang Y, Lin Z, Cheng X, Liu J, Chen C, Pan L.

Autophagy. 2015;11(10):1775-89. doi: 10.1080/15548627.2015.1082025.

14.

An essential role for the ATG8 ortholog LC3C in antibacterial autophagy.

von Muhlinen N, Akutsu M, Ravenhill BJ, Foeglein Á, Bloor S, Rutherford TJ, Freund SM, Komander D, Randow F.

Autophagy. 2013 May;9(5):784-6. doi: 10.4161/auto.23698. Epub 2013 Feb 22.

15.

A Tecpr1-dependent selective autophagy pathway targets bacterial pathogens.

Ogawa M, Yoshikawa Y, Kobayashi T, Mimuro H, Fukumatsu M, Kiga K, Piao Z, Ashida H, Yoshida M, Kakuta S, Koyama T, Goto Y, Nagatake T, Nagai S, Kiyono H, Kawalec M, Reichhart JM, Sasakawa C.

Cell Host Microbe. 2011 May 19;9(5):376-89. doi: 10.1016/j.chom.2011.04.010.

16.

Binding of the pathogen receptor HSP90AA1 to avibirnavirus VP2 induces autophagy by inactivating the AKT-MTOR pathway.

Hu B, Zhang Y, Jia L, Wu H, Fan C, Sun Y, Ye C, Liao M, Zhou J.

Autophagy. 2015;11(3):503-15. doi: 10.1080/15548627.2015.1017184.

17.

Methods for Studying Interactions Between Atg8/LC3/GABARAP and LIR-Containing Proteins.

Johansen T, Birgisdottir ÅB, Huber J, Kniss A, Dötsch V, Kirkin V, Rogov VV.

Methods Enzymol. 2017;587:143-169. doi: 10.1016/bs.mie.2016.10.023. Epub 2017 Jan 12.

PMID:
28253953
18.

The adaptor protein p62/SQSTM1 targets invading bacteria to the autophagy pathway.

Zheng YT, Shahnazari S, Brech A, Lamark T, Johansen T, Brumell JH.

J Immunol. 2009 Nov 1;183(9):5909-16. doi: 10.4049/jimmunol.0900441. Epub 2009 Oct 7.

19.

The GST-BHMT assay reveals a distinct mechanism underlying proteasome inhibition-induced macroautophagy in mammalian cells.

Rui YN, Xu Z, Chen Z, Zhang S.

Autophagy. 2015;11(5):812-32. doi: 10.1080/15548627.2015.1034402.

20.

p62 and NDP52 proteins target intracytosolic Shigella and Listeria to different autophagy pathways.

Mostowy S, Sancho-Shimizu V, Hamon MA, Simeone R, Brosch R, Johansen T, Cossart P.

J Biol Chem. 2011 Jul 29;286(30):26987-95. doi: 10.1074/jbc.M111.223610. Epub 2011 Jun 6.

Supplemental Content

Support Center