Format
Sort by
Items per page

Send to

Choose Destination

Links from PubMed

Items: 1 to 20 of 105

1.

Biochemical impacts in adult and juvenile farmed European seabass and gilthead seabream from semi-intensive aquaculture of southern European estuarine systems.

Rocha CP, Cabral HN, Nunes C, Coimbra MA, Gonçalves FJM, Marques JC, Gonçalves AMM.

Environ Sci Pollut Res Int. 2019 May;26(13):13422-13440. doi: 10.1007/s11356-019-04825-8. Epub 2019 Mar 23.

PMID:
30905015
2.
3.

Comparison among different gilthead sea bream (Sparus aurata) farming systems: activity of intestinal and hepatic enzymes and 13C-NMR analysis of lipids.

Del Coco L, Papadia P, Pascali SA, Bressani G, Storelli C, Zonno V, Fanizzi FP.

Nutrients. 2009 Feb;1(2):291-301. doi: 10.3390/nu1020291. Epub 2009 Dec 18.

4.

Authenticating production origin of gilthead sea bream (Sparus aurata) by chemical and isotopic fingerprinting.

Morrison DJ, Preston T, Bron JE, Hemderson RJ, Cooper K, Strachan F, Bell JG.

Lipids. 2007 Jun;42(6):537-45. Epub 2007 Apr 27.

PMID:
17464521
5.

Comparison of elemental composition in two wild and cultured marine fish and potential risks to human health.

Marengo M, Durieux EDH, Ternengo S, Lejeune P, Degrange E, Pasqualini V, Gobert S.

Ecotoxicol Environ Saf. 2018 Aug 30;158:204-212. doi: 10.1016/j.ecoenv.2018.04.034. Epub 2018 Apr 25.

6.

Allostatic Load and Stress Physiology in European Seabass (Dicentrarchus labrax L.) and Gilthead Seabream (Sparus aurata L.).

Samaras A, Espírito Santo C, Papandroulakis N, Mitrizakis N, Pavlidis M, Höglund E, Pelgrim TNM, Zethof J, Spanings FAT, Vindas MA, Ebbesson LOE, Flik G, Gorissen M.

Front Endocrinol (Lausanne). 2018 Aug 13;9:451. doi: 10.3389/fendo.2018.00451. eCollection 2018.

7.

Molecular cloning and characterization of European seabass (Dicentrarchus labrax) and Gilthead seabream (Sparus aurata) complement component C3.

Mauri I, Roher N, MacKenzie S, Romero A, Manchado M, Balasch JC, Béjar J, Alvarez MC, Tort L.

Fish Shellfish Immunol. 2011 Jun;30(6):1310-22. doi: 10.1016/j.fsi.2011.03.013. Epub 2011 Mar 21.

PMID:
21421056
8.

Reduction of persistent and semi-persistent organic pollutants in fillets of farmed European seabass (Dicentrarchus labrax) fed low fish oil diets.

Ginés R, Camacho M, Henríquez-Hernández LA, Izquierdo M, Boada LD, Montero D, Robaina L, Zumbado M, Luzardo OP.

Sci Total Environ. 2018 Dec 1;643:1239-1247. doi: 10.1016/j.scitotenv.2018.06.223. Epub 2018 Jul 4.

PMID:
30189540
9.

Application of nonparametric multivariate analyses to the authentication of wild and farmed European sea bass (Dicentrarchus labrax). Results of a survey on fish sampled in the retail trade.

Fasolato L, Novelli E, Salmaso L, Corain L, Camin F, Perini M, Antonetti P, Balzan S.

J Agric Food Chem. 2010 Oct 27;58(20):10979-88. doi: 10.1021/jf1015126. Epub 2010 Sep 21.

PMID:
20857938
10.

Elemental composition of four farmed fish produced in Portugal.

Lourenço HM, Afonso C, Anacleto P, Martins MF, Nunes ML, Lino AR.

Int J Food Sci Nutr. 2012 Nov;63(7):853-9. doi: 10.3109/09637486.2012.681632. Epub 2012 May 11.

PMID:
22574998
11.

Nutritional fatty acid quality of raw and cooked farmed and wild sea bream (Sparus aurata).

Mnari Bhouri A, Jrah Harzallah H, Dhibi M, Bouhlel I, Hammami M, Chaouch A.

J Agric Food Chem. 2010 Jan 13;58(1):507-12. doi: 10.1021/jf902096w.

PMID:
19911842
12.

Rearing temperature enhances hepatic glucokinase but not glucose-6-phosphatase activities in European sea bass (Dicentrarchus labrax) and gilthead sea bream (Sparus aurata) juveniles fed with the same level of glucose.

Enes P, Panserat S, Kaushik S, Oliva-Teles A.

Comp Biochem Physiol A Mol Integr Physiol. 2008 Jul;150(3):355-8. doi: 10.1016/j.cbpa.2008.04.596. Epub 2008 Apr 23.

PMID:
18508397
13.

Trace elements and metals in farmed sea bass and gilthead bream from Tenerife Island, Spain.

Rubio C, Jalilli A, Gutiérrez AJ, González-Weller D, Hernández F, Melón E, Burgos A, Revert C, Hardisson A.

J Food Prot. 2011 Nov;74(11):1938-43. doi: 10.4315/0362-028X.JFP-11-118.

PMID:
22054198
14.

An in vitro and in silico study on the antioxidant and cell culture-based study on the chemoprotective activities of fish muscle protein hydrolysates obtained from European seabass and gilthead seabream.

Altınelataman C, Koroleva O, Fedorova T, Torkova A, Lisitskaya K, Tsentalovich M, Kononikhin A, Popov I, Vasina D, Kovalyov L, Çelik U.

Food Chem. 2019 Jan 15;271:724-732. doi: 10.1016/j.foodchem.2018.08.004. Epub 2018 Aug 3.

PMID:
30236737
15.

Nodavirus infection induces a great innate cell-mediated cytotoxic activity in resistant, gilthead seabream, and susceptible, European sea bass, teleost fish.

Chaves-Pozo E, Guardiola FA, Meseguer J, Esteban MA, Cuesta A.

Fish Shellfish Immunol. 2012 Nov;33(5):1159-66. doi: 10.1016/j.fsi.2012.09.002. Epub 2012 Sep 11.

PMID:
22981914
16.

Will seabass (Dicentrarchus labrax) quality change in a warmer ocean?

Barbosa V, Maulvault AL, Alves RN, Anacleto P, Pousão-Ferreira P, Carvalho ML, Nunes ML, Rosa R, Marques A.

Food Res Int. 2017 Jul;97:27-36. doi: 10.1016/j.foodres.2017.03.024. Epub 2017 Mar 16.

PMID:
28578051
17.

Lipid digestion capacity in gilthead seabream (Sparus aurata) from first feeding to commercial size.

Arantzamendi L, Roo F, Hernández-Cruz CM, Fernández-Palacios H, Izquierdo M.

Fish Physiol Biochem. 2019 Feb;45(1):469-484. doi: 10.1007/s10695-018-0577-y. Epub 2018 Oct 31.

PMID:
30382441
18.
19.
20.

Trace elements in farmed and wild gilthead seabream, Sparus aurata.

Minganti V, Drava G, De Pellegrini R, Siccardi C.

Mar Pollut Bull. 2010 Nov;60(11):2022-5. doi: 10.1016/j.marpolbul.2010.07.023. Epub 2010 Aug 21.

PMID:
20732698

Supplemental Content

Support Center