Format
Sort by
Items per page

Send to

Choose Destination

Links from PubMed

Items: 1 to 20 of 89

1.

Distribution of Gadolinium in Rat Heart Studied by Fast Field Cycling Relaxometry and Imaging SIMS.

Bonechi C, Consumi M, Matteucci M, Tamasi G, Donati A, Leone G, Menichetti L, Kusmic C, Rossi C, Magnani A.

Int J Mol Sci. 2019 Mar 16;20(6). pii: E1339. doi: 10.3390/ijms20061339.

2.

Sample Shuttling Relaxometry of Contrast Agents: NMRD Profiles above 1 T with a Single Device.

Gossuin Y, Serhan Z, Sandiford L, Henrard D, Marquardsen T, de Rosales RT, Sakellariou D, Ferrage F.

Appl Magn Reson. 2016;47:237-246. Epub 2016 Jan 30.

3.

Comparative study of the physicochemical properties of six clinical low molecular weight gadolinium contrast agents.

Laurent S, Elst LV, Muller RN.

Contrast Media Mol Imaging. 2006 May-Jun;1(3):128-37.

PMID:
17193689
4.

Late gadolinium enhancement on cardiac magnetic resonance predicts coronary vasomotor abnormality and myocardial lactate production in patients with chronic heart failure.

Uemura T, Yamamuro M, Kaikita K, Takashio S, Utsunomiya D, Hirakawa K, Nakayama M, Sakamoto K, Yamamoto E, Tsujita K, Kojima S, Hokimoto S, Yamashita Y, Ogawa H.

Heart Vessels. 2016 Dec;31(12):1969-1979. Epub 2016 Feb 18.

5.

Dual-contrast agent photon-counting computed tomography of the heart: initial experience.

Symons R, Cork TE, Lakshmanan MN, Evers R, Davies-Venn C, Rice KA, Thomas ML, Liu CY, Kappler S, Ulzheimer S, Sandfort V, Bluemke DA, Pourmorteza A.

Int J Cardiovasc Imaging. 2017 Aug;33(8):1253-1261. doi: 10.1007/s10554-017-1104-4. Epub 2017 Mar 13.

PMID:
28289990
6.

Gd-Complexes of New Arylpiperazinyl Conjugates of DTPA-Bis(amides): Synthesis, Characterization and Magnetic Relaxation Properties.

Ba-Salem AO, Ullah N, Shaikh MN, Faiz M, Ul-Haq Z.

Molecules. 2015 Apr 29;20(5):7807-19. doi: 10.3390/molecules20057807.

7.

[Myocardial microcirculation in humans--new approaches using MRI].

Wacker CM, Bauer WR.

Herz. 2003 Mar;28(2):74-81. German.

PMID:
12669220
8.

P03277-A New Approach to Achieve High-Contrast Enhancement: Initial Results of an Experimental Extracellular Gadolinium-Based Magnetic Resonance Contrast Agent.

Fries P, Müller A, Seidel R, Robert P, Denda G, Menger MD, Schneider G, Buecker A.

Invest Radiol. 2015 Dec;50(12):835-42. doi: 10.1097/RLI.0000000000000192.

PMID:
26186281
9.

Evaluation of biomolecular distributions in rat brain tissues by means of ToF-SIMS using a continuous beam of Ar clusters.

Nakano S, Yokoyama Y, Aoyagi S, Himi N, Fletcher JS, Lockyer NP, Henderson A, Vickerman JC.

Biointerphases. 2016 Jun 8;11(2):02A307. doi: 10.1116/1.4939251.

PMID:
26746166
10.

Gadolinium-1,4,7,10-tetraazacyclododecane-N,N',N'',N'''-tetraacetic acid-icosahedral closo-borane12 scaffold conjugated with Glu-{Glu-[cyclo(Arg-Gly-Asp-d-Phe-Lys)]2}2.

Leung K.

Molecular Imaging and Contrast Agent Database (MICAD) [Internet]. Bethesda (MD): National Center for Biotechnology Information (US); 2004-2013.
2013 Apr 11 [updated 2013 May 30].

11.

High-relaxivity magnetic resonance imaging contrast agents. Part 2. Optimization of inner- and second-sphere relaxivity.

Jacques V, Dumas S, Sun WC, Troughton JS, Greenfield MT, Caravan P.

Invest Radiol. 2010 Oct;45(10):613-24. doi: 10.1097/RLI.0b013e3181ee6a49.

12.
13.

Pathological mechanism for delayed hyperenhancement of chronic scarred myocardium in contrast agent enhanced magnetic resonance imaging.

Wang J, Xiang B, Lin HY, Liu H, Freed D, Arora RC, Tian G.

PLoS One. 2014 May 6;9(5):e96463. doi: 10.1371/journal.pone.0096463. eCollection 2014.

14.

Gadolinium-1,4,7,10-tetraazacyclododecane-N',N'',N''',N''''-tetraacetic acid-Pro-Leu-Ala-Leu-Lys-Arg-Asp-Arg .

Leung K.

Molecular Imaging and Contrast Agent Database (MICAD) [Internet]. Bethesda (MD): National Center for Biotechnology Information (US); 2004-2013.
2008 Jun 15 [updated 2008 Jul 15].

15.

Gd-hydroxypyridinone (HOPO)-based high-relaxivity magnetic resonance imaging (MRI) contrast agents.

Datta A, Raymond KN.

Acc Chem Res. 2009 Jul 21;42(7):938-47. doi: 10.1021/ar800250h. Review.

16.

Cardiac magnetic resonance in patients with mitral valve prolapse: Focus on late gadolinium enhancement and T1 mapping.

Pradella S, Grazzini G, Brandani M, Calistri L, Nardi C, Mori F, Miele V, Colagrande S.

Eur Radiol. 2019 Mar;29(3):1546-1554. doi: 10.1007/s00330-018-5634-5. Epub 2018 Aug 7.

PMID:
30088066
17.

Cardiovascular Magnetic Resonance Relaxometry Predicts Regional Functional Outcome After Experimental Myocardial Infarction.

Haberkorn SM, Jacoby C, Ding Z, Keul P, Bönner F, Polzin A, Levkau B, Schrader J, Kelm M, Flögel U.

Circ Cardiovasc Imaging. 2017 Aug;10(8). pii: e006025. doi: 10.1161/CIRCIMAGING.116.006025.

PMID:
28790121
18.

Positron emission tomography for the assessment of myocardial viability: an evidence-based analysis.

Medical Advisory Secretariat.

Ont Health Technol Assess Ser. 2010;10(16):1-80. Epub 2010 Jul 1.

19.

Paramagnetic ultrasmall gadolinium oxide nanoparticles as advanced T1 MRI contrast agent: account for large longitudinal relaxivity, optimal particle diameter, and in vivo T1 MR images.

Park JY, Baek MJ, Choi ES, Woo S, Kim JH, Kim TJ, Jung JC, Chae KS, Chang Y, Lee GH.

ACS Nano. 2009 Nov 24;3(11):3663-9. doi: 10.1021/nn900761s.

PMID:
19835389
20.

Spatially resolved quantification of gadolinium(III)-based magnetic resonance agents in tissue by MALDI imaging mass spectrometry after in vivo MRI.

Aichler M, Huber K, Schilling F, Lohöfer F, Kosanke K, Meier R, Rummeny EJ, Walch A, Wildgruber M.

Angew Chem Int Ed Engl. 2015 Mar 27;54(14):4279-83. doi: 10.1002/anie.201410555. Epub 2015 Feb 16.

PMID:
25689595

Supplemental Content

Support Center