Format
Sort by
Items per page

Send to

Choose Destination

Links from PubMed

Items: 1 to 20 of 98

1.

The golden death bacillus Chryseobacterium nematophagum is a novel matrix digesting pathogen of nematodes.

Page AP, Roberts M, Félix MA, Pickard D, Page A, Weir W.

BMC Biol. 2019 Feb 28;17(1):10. doi: 10.1186/s12915-019-0632-x.

2.

A conserved metalloprotease mediates ecdysis in Caenorhabditis elegans.

Davis MW, Birnie AJ, Chan AC, Page AP, Jorgensen EM.

Development. 2004 Dec;131(23):6001-8.

3.

A highly conserved, inhibitable astacin metalloprotease from Teladorsagia circumcincta is required for cuticle formation and nematode development.

Stepek G, McCormack G, Winter AD, Page AP.

Int J Parasitol. 2015 Apr;45(5):345-55. doi: 10.1016/j.ijpara.2015.01.004. Epub 2015 Feb 28.

4.

Insect pathogens as biological control agents: Back to the future.

Lacey LA, Grzywacz D, Shapiro-Ilan DI, Frutos R, Brownbridge M, Goettel MS.

J Invertebr Pathol. 2015 Nov;132:1-41. doi: 10.1016/j.jip.2015.07.009. Epub 2015 Jul 27. Review.

PMID:
26225455
5.

Collagen processing and cuticle formation is catalysed by the astacin metalloprotease DPY-31 in free-living and parasitic nematodes.

Stepek G, McCormack G, Page AP.

Int J Parasitol. 2010 Apr;40(5):533-42. doi: 10.1016/j.ijpara.2009.10.007. Epub 2009 Oct 31.

PMID:
19883650
6.

Transcriptome analyses reveal protein and domain families that delineate stage-related development in the economically important parasitic nematodes, Ostertagia ostertagi and Cooperia oncophora.

Heizer E, Zarlenga DS, Rosa B, Gao X, Gasser RB, De Graef J, Geldhof P, Mitreva M.

BMC Genomics. 2013 Feb 22;14:118. doi: 10.1186/1471-2164-14-118.

7.

Role of the bovine immune system and genome in resistance to gastrointestinal nematodes.

Gasbarre LC, Leighton EA, Sonstegard T.

Vet Parasitol. 2001 Jul 12;98(1-3):51-64. Review.

PMID:
11516579
8.

Selenophene and thiophene-core estrogen receptor ligands that inhibit motility and development of parasitic stages of Haemonchus contortus.

Preston S, Luo J, Zhang Y, Jabbar A, Crawford S, Baell J, Hofmann A, Hu M, Zhou HB, Gasser RB.

Parasit Vectors. 2016 Jun 16;9(1):346. doi: 10.1186/s13071-016-1612-4.

9.

Structural and functional characterisation of the fork head transcription factor-encoding gene, Hc-daf-16, from the parasitic nematode Haemonchus contortus (Strongylida).

Hu M, Lok JB, Ranjit N, Massey HC Jr, Sternberg PW, Gasser RB.

Int J Parasitol. 2010 Mar 15;40(4):405-15. doi: 10.1016/j.ijpara.2009.09.005. Epub 2009 Sep 29.

10.

A subset of naturally isolated Bacillus strains show extreme virulence to the free-living nematodes Caenorhabditis elegans and Pristionchus pacificus.

Rae R, Iatsenko I, Witte H, Sommer RJ.

Environ Microbiol. 2010 Nov;12(11):3007-21. doi: 10.1111/j.1462-2920.2010.02278.x.

PMID:
20626457
11.

Intestinal transcriptomes of nematodes: comparison of the parasites Ascaris suum and Haemonchus contortus with the free-living Caenorhabditis elegans.

Yin Y, Martin J, Abubucker S, Scott AL, McCarter JP, Wilson RK, Jasmer DP, Mitreva M.

PLoS Negl Trop Dis. 2008 Aug 6;2(8):e269. doi: 10.1371/journal.pntd.0000269.

12.

The astacin metalloprotease moulting enzyme NAS-36 is required for normal cuticle ecdysis in free-living and parasitic nematodes.

Stepek G, McCormack G, Birnie AJ, Page AP.

Parasitology. 2011 Feb;138(2):237-48. doi: 10.1017/S0031182010001113. Epub 2010 Aug 27.

PMID:
20800010
13.

Systematics of gastrointestinal nematodes of domestic ruminants: advances between 1992 and 1995 and proposals for future research.

Lichtenfels JR, Hoberg EP, Zarlenga DS.

Vet Parasitol. 1997 Nov;72(3-4):225-38; discussion 238-45. Review.

PMID:
9460200
14.

Gastrointestinal parasites of captive European bison Bison bonasus (L.) with a sign of reduced efficacy of Haemonchus contortus to fenbendazole.

Pyziel AM, Björck S, Wiklund R, Skarin M, Demiaszkiewicz AW, Höglund J.

Parasitol Res. 2018 Jan;117(1):295-302. doi: 10.1007/s00436-017-5663-z. Epub 2017 Oct 31.

PMID:
29090320
15.

The genome and transcriptome of Haemonchus contortus, a key model parasite for drug and vaccine discovery.

Laing R, Kikuchi T, Martinelli A, Tsai IJ, Beech RN, Redman E, Holroyd N, Bartley DJ, Beasley H, Britton C, Curran D, Devaney E, Gilabert A, Hunt M, Jackson F, Johnston SL, Kryukov I, Li K, Morrison AA, Reid AJ, Sargison N, Saunders GI, Wasmuth JD, Wolstenholme A, Berriman M, Gilleard JS, Cotton JA.

Genome Biol. 2013 Aug 28;14(8):R88. doi: 10.1186/gb-2013-14-8-r88.

16.

Interaction of a free-living soil nematode, Caenorhabditis elegans, with surrogates of foodborne pathogenic bacteria.

Anderson GL, Caldwell KN, Beuchat LR, Williams PL.

J Food Prot. 2003 Sep;66(9):1543-9.

PMID:
14503703
17.

Inhibition of Haemonchus contortus larval development by fungal lectins.

Heim C, Hertzberg H, Butschi A, Bleuler-Martinez S, Aebi M, Deplazes P, Künzler M, Štefanić S.

Parasit Vectors. 2015 Aug 19;8:425. doi: 10.1186/s13071-015-1032-x.

18.

Deciphering the molecular determinants of cholinergic anthelmintic sensitivity in nematodes: When novel functional validation approaches highlight major differences between the model Caenorhabditis elegans and parasitic species.

Blanchard A, Guégnard F, Charvet CL, Crisford A, Courtot E, Sauvé C, Harmache A, Duguet T, O'Connor V, Castagnone-Sereno P, Reaves B, Wolstenholme AJ, Beech RN, Holden-Dye L, Neveu C.

PLoS Pathog. 2018 May 2;14(5):e1006996. doi: 10.1371/journal.ppat.1006996. eCollection 2018 May.

19.

Signal pathways involved in microbe-nematode interactions provide new insights into the biocontrol of plant-parasitic nematodes.

Liang LM, Zou CG, Xu J, Zhang KQ.

Philos Trans R Soc Lond B Biol Sci. 2019 Mar 4;374(1767):20180317. doi: 10.1098/rstb.2018.0317.

PMID:
30967028
20.

Bacillus sp. B16 kills nematodes with a serine protease identified as a pathogenic factor.

Qiuhong N, Xiaowei H, Baoyu T, Jinkui Y, Jiang L, Lin Z, Keqin Z.

Appl Microbiol Biotechnol. 2006 Feb;69(6):722-30. Epub 2005 Jul 15.

PMID:
16025329

Supplemental Content

Support Center