Format
Sort by
Items per page

Send to

Choose Destination

Links from PubMed

Items: 1 to 20 of 125

1.

Borrelia burgdorferi bbk13 Is Critical for Spirochete Population Expansion in the Skin during Early Infection.

Aranjuez GF, Kuhn HW, Adams PP, Jewett MW.

Infect Immun. 2019 Apr 23;87(5). pii: e00887-18. doi: 10.1128/IAI.00887-18. Print 2019 Mar.

2.

The critical role of the linear plasmid lp36 in the infectious cycle of Borrelia burgdorferi.

Jewett MW, Lawrence K, Bestor AC, Tilly K, Grimm D, Shaw P, VanRaden M, Gherardini F, Rosa PA.

Mol Microbiol. 2007 Jun;64(5):1358-74.

3.

Influence of arthritis-related protein (BBF01) on infectivity of Borrelia burgdorferi B31.

Imai D, Holden K, Velazquez EM, Feng S, Hodzic E, Barthold SW.

BMC Microbiol. 2013 May 7;13:100. doi: 10.1186/1471-2180-13-100.

4.

In vivo expression technology identifies a novel virulence factor critical for Borrelia burgdorferi persistence in mice.

Ellis TC, Jain S, Linowski AK, Rike K, Bestor A, Rosa PA, Halpern M, Kurhanewicz S, Jewett MW.

PLoS Pathog. 2013;9(8):e1003567. doi: 10.1371/journal.ppat.1003567. Epub 2013 Aug 29. Erratum in: PLoS Pathog. 2014 Jun;10(6). doi:10.1371/journal.ppat.1004260. Corrected and republished in: PLoS Pathog. 2014 Jun;10(6):e1004260.

5.

Regulatory protein BBD18 of the lyme disease spirochete: essential role during tick acquisition?

Hayes BM, Dulebohn DP, Sarkar A, Tilly K, Bestor A, Ambroggio X, Rosa PA.

MBio. 2014 Apr 1;5(2):e01017-14. doi: 10.1128/mBio.01017-14. Erratum in: MBio. 2014;5(4):doi: 10.1128/mBio.01608-14.

6.

Correction: In Vivo Expression Technology Identifies a Novel Virulence Factor Critical for Borrelia burgdorferi Persistence in Mice.

Ellis TC, Jain S, Linowski AK, Rike K, Bestor A, Rosa PA, Halpern M, Kurhanewicz S, Jewett MW.

PLoS Pathog. 2014 Jun 20;10(6):e1004260. doi: 10.1371/journal.ppat.1004260. eCollection 2014 Jun.

7.

The Borrelia burgdorferi Glycosaminoglycan Binding Protein Bgp in the B31 Strain Is Not Essential for Infectivity despite Facilitating Adherence and Tissue Colonization.

Schlachter S, Seshu J, Lin T, Norris S, Parveen N.

Infect Immun. 2018 Jan 22;86(2). pii: e00667-17. doi: 10.1128/IAI.00667-17. Print 2018 Feb.

9.

New Zealand White Rabbits Effectively Clear Borrelia burgdorferi B31 despite the Bacterium's Functional vlsE Antigenic Variation System.

Batool M, Hillhouse AE, Ionov Y, Kochan KJ, Mohebbi F, Stoica G, Threadgill DW, Zelikovsky A, Waghela SD, Wiener DJ, Rogovskyy AS.

Infect Immun. 2019 Jun 20;87(7). pii: e00164-19. doi: 10.1128/IAI.00164-19. Print 2019 Jul.

PMID:
30988058
10.

Genome-Wide Mutagenesis in Borrelia burgdorferi.

Lin T, Gao L.

Methods Mol Biol. 2018;1690:201-223. doi: 10.1007/978-1-4939-7383-5_16.

PMID:
29032547
11.

Borrelia burgdorferi harbors a transport system essential for purine salvage and mammalian infection.

Jain S, Sutchu S, Rosa PA, Byram R, Jewett MW.

Infect Immun. 2012 Sep;80(9):3086-93. doi: 10.1128/IAI.00514-12. Epub 2012 Jun 18.

12.

Borrelia burgdorferi CheD Promotes Various Functions in Chemotaxis and the Pathogenic Life Cycle of the Spirochete.

Moon KH, Hobbs G, Motaleb MA.

Infect Immun. 2016 May 24;84(6):1743-1752. doi: 10.1128/IAI.01347-15. Print 2016 Jun.

13.

Comparative molecular analyses of Borrelia burgdorferi sensu stricto strains B31 and N40D10/E9 and determination of their pathogenicity.

Chan K, Awan M, Barthold SW, Parveen N.

BMC Microbiol. 2012 Jul 30;12:157. doi: 10.1186/1471-2180-12-157.

14.

Population bottlenecks during the infectious cycle of the Lyme disease spirochete Borrelia burgdorferi.

Rego RO, Bestor A, Stefka J, Rosa PA.

PLoS One. 2014 Jun 30;9(6):e101009. doi: 10.1371/journal.pone.0101009. eCollection 2014. Erratum in: PLoS One. 2014;9(9):e108612.

15.

Strain-specific variation of the decorin-binding adhesin DbpA influences the tissue tropism of the lyme disease spirochete.

Lin YP, Benoit V, Yang X, Martínez-Herranz R, Pal U, Leong JM.

PLoS Pathog. 2014 Jul 31;10(7):e1004238. doi: 10.1371/journal.ppat.1004238. eCollection 2014 Jul.

16.

Virulence of the Lyme disease spirochete before and after the tick bloodmeal: a quantitative assessment.

Kasumba IN, Bestor A, Tilly K, Rosa PA.

Parasit Vectors. 2016 Mar 7;9:129. doi: 10.1186/s13071-016-1380-1.

17.

Fluorescent Proteins, Promoters, and Selectable Markers for Applications in the Lyme Disease Spirochete Borrelia burgdorferi.

Takacs CN, Kloos ZA, Scott M, Rosa PA, Jacobs-Wagner C.

Appl Environ Microbiol. 2018 Nov 30;84(24). pii: e01824-18. doi: 10.1128/AEM.01824-18. Print 2018 Dec 15.

18.

Investigating the potential role of non-vls genes on linear plasmid 28-1 in virulence and persistence by Borrelia burgdorferi.

Magunda PR, Bankhead T.

BMC Microbiol. 2016 Aug 8;16(1):180. doi: 10.1186/s12866-016-0806-4.

19.

Detection of Bioluminescent Borrelia burgdorferi from In Vitro Cultivation and During Murine Infection.

Hyde JA, Skare JT.

Methods Mol Biol. 2018;1690:241-257. doi: 10.1007/978-1-4939-7383-5_18.

PMID:
29032549
20.

Two Distinct Mechanisms Govern RpoS-Mediated Repression of Tick-Phase Genes during Mammalian Host Adaptation by Borrelia burgdorferi, the Lyme Disease Spirochete.

Grove AP, Liveris D, Iyer R, Petzke M, Rudman J, Caimano MJ, Radolf JD, Schwartz I.

MBio. 2017 Aug 22;8(4). pii: e01204-17. doi: 10.1128/mBio.01204-17.

Supplemental Content

Support Center