Format
Sort by
Items per page

Send to

Choose Destination

Links from PubMed

Items: 1 to 20 of 100

1.

Regulation of the mid-blastula transition in amphibians.

Etkin LD.

Dev Biol (N Y 1985). 1988;5:209-25. Review.

PMID:
3077975
2.

Altered expression of Chk1 disrupts cell cycle remodeling at the midblastula transition in Xenopus laevis embryos.

Petrus MJ, Wilhelm DE, Murakami M, Kappas NC, Carter AD, Wroble BN, Sible JC.

Cell Cycle. 2004 Feb;3(2):212-7.

PMID:
14712091
3.

Chk1 Inhibition of the Replication Factor Drf1 Guarantees Cell-Cycle Elongation at the Xenopus laevis Mid-blastula Transition.

Collart C, Smith JC, Zegerman P.

Dev Cell. 2017 Jul 10;42(1):82-96.e3. doi: 10.1016/j.devcel.2017.06.010.

4.

Dominant negative E2F inhibits progression of the cell cycle after the midblastula transition in Xenopus.

Tanaka T, Ono T, Kitamura N, Kato JY.

Cell Struct Funct. 2003 Dec;28(6):515-22.

5.

The events of the midblastula transition in Xenopus are regulated by changes in the cell cycle.

Kimelman D, Kirschner M, Scherson T.

Cell. 1987 Feb 13;48(3):399-407.

PMID:
3802197
6.

Geminin is required for zygotic gene expression at the Xenopus mid-blastula transition.

Kerns SL, Schultz KM, Barry KA, Thorne TM, McGarry TJ.

PLoS One. 2012;7(5):e38009. doi: 10.1371/journal.pone.0038009. Epub 2012 May 25.

7.

A role for cyclin E/Cdk2 in the timing of the midblastula transition in Xenopus embryos.

Hartley RS, Sible JC, Lewellyn AL, Maller JL.

Dev Biol. 1997 Aug 15;188(2):312-21.

9.

High-resolution analysis of gene activity during the Xenopus mid-blastula transition.

Collart C, Owens ND, Bhaw-Rosun L, Cooper B, De Domenico E, Patrushev I, Sesay AK, Smith JN, Smith JC, Gilchrist MJ.

Development. 2014 May;141(9):1927-39. doi: 10.1242/dev.102012.

11.
12.

Regulation of zygotic genome activation and DNA damage checkpoint acquisition at the mid-blastula transition.

Zhang M, Kothari P, Mullins M, Lampson MA.

Cell Cycle. 2014;13(24):3828-38. doi: 10.4161/15384101.2014.967066.

13.

Cell cycle transition in early embryonic development of Xenopus laevis.

Masui Y, Wang P.

Biol Cell. 1998 Nov;90(8):537-48. Review.

PMID:
10068998
14.

Titration of four replication factors is essential for the Xenopus laevis midblastula transition.

Collart C, Allen GE, Bradshaw CR, Smith JC, Zegerman P.

Science. 2013 Aug 23;341(6148):893-6. doi: 10.1126/science.1241530. Epub 2013 Aug 1.

15.

G2 acquisition by transcription-independent mechanism at the zebrafish midblastula transition.

Dalle Nogare DE, Pauerstein PT, Lane ME.

Dev Biol. 2009 Feb 1;326(1):131-42. doi: 10.1016/j.ydbio.2008.11.002. Epub 2008 Nov 14.

16.
17.

Role of the PI3K-TOR-S6K pathway in the onset of cell cycle elongation during Xenopus early embryogenesis.

Ueno S, Ueno T, Iwao Y.

Dev Growth Differ. 2011 Oct;53(8):924-33. doi: 10.1111/j.1440-169X.2011.01297.x. Epub 2011 Sep 29.

PMID:
21958163
18.
19.

An essential role for transcription before the MBT in Xenopus laevis.

Skirkanich J, Luxardi G, Yang J, Kodjabachian L, Klein PS.

Dev Biol. 2011 Sep 15;357(2):478-91. doi: 10.1016/j.ydbio.2011.06.010. Epub 2011 Jun 29.

Supplemental Content

Support Center