Format
Sort by
Items per page

Send to

Choose Destination

Links from PubMed

Items: 1 to 20 of 100

1.

Efficacy of a novel sequential enzymatic hydrolysis of lignocellulosic biomass and inhibition characteristics of monosugars.

Baksi S, Ball AK, Sarkar U, Banerjee D, Wentzel A, Preisig HA, Kuniyal JC, Birgen C, Saha S, Wittgens B, Markussen S.

Int J Biol Macromol. 2019 May 15;129:634-644. doi: 10.1016/j.ijbiomac.2019.01.188. Epub 2019 Feb 7.

PMID:
30738163
2.

Inhibitory effect of vanillin on cellulase activity in hydrolysis of cellulosic biomass.

Li Y, Qi B, Wan Y.

Bioresour Technol. 2014 Sep;167:324-30. doi: 10.1016/j.biortech.2014.06.035. Epub 2014 Jun 17.

PMID:
24997375
3.

Kinetic studies on the product inhibition of enzymatic lignocellulose hydrolysis.

Miao Y, Chen JY, Jiang X, Huang Z.

Appl Biochem Biotechnol. 2012 May;167(2):358-66. doi: 10.1007/s12010-012-9689-5. Epub 2012 May 3.

PMID:
22552805
4.

Effect of lignin chemistry on the enzymatic hydrolysis of woody biomass.

Yu Z, Gwak KS, Treasure T, Jameel H, Chang HM, Park S.

ChemSusChem. 2014 Jul;7(7):1942-50. doi: 10.1002/cssc.201400042. Epub 2014 Jun 5.

PMID:
24903047
5.

Effect of anion structures on cholinium ionic liquids pretreatment of rice straw and the subsequent enzymatic hydrolysis.

Hou XD, Xu J, Li N, Zong MH.

Biotechnol Bioeng. 2015 Jan;112(1):65-73. doi: 10.1002/bit.25335. Epub 2014 Sep 10.

PMID:
25067792
6.

Chemical Pretreatment-Independent Saccharifications of Xylan and Cellulose of Rice Straw by Bacterial Weak Lignin-Binding Xylanolytic and Cellulolytic Enzymes.

Teeravivattanakit T, Baramee S, Phitsuwan P, Sornyotha S, Waeonukul R, Pason P, Tachaapaikoon C, Poomputsa K, Kosugi A, Sakka K, Ratanakhanokchai K.

Appl Environ Microbiol. 2017 Oct 31;83(22). pii: e01522-17. doi: 10.1128/AEM.01522-17. Print 2017 Nov 15.

7.

Temperature sensitivity of cellulase adsorption on lignin and its impact on enzymatic hydrolysis of lignocellulosic biomass.

Zheng Y, Zhang S, Miao S, Su Z, Wang P.

J Biotechnol. 2013 Jul 10;166(3):135-43. doi: 10.1016/j.jbiotec.2013.04.018. Epub 2013 May 4.

8.

Enhanced biomass delignification and enzymatic saccharification of canola straw by steam-explosion pretreatment.

Garmakhany AD, Kashaninejad M, Aalami M, Maghsoudlou Y, Khomieri M, Tabil LG.

J Sci Food Agric. 2014 Jun;94(8):1607-13. doi: 10.1002/jsfa.6466. Epub 2013 Dec 17.

PMID:
24186725
9.

Using FTIR to predict saccharification from enzymatic hydrolysis of alkali-pretreated biomasses.

Sills DL, Gossett JM.

Biotechnol Bioeng. 2012 Feb;109(2):353-62. doi: 10.1002/bit.23314. Epub 2011 Sep 9.

PMID:
21898366
10.

Organic amine catalytic organosolv pretreatment of corn stover for enzymatic saccharification and high-quality lignin.

Tang C, Shan J, Chen Y, Zhong L, Shen T, Zhu C, Ying H.

Bioresour Technol. 2017 May;232:222-228. doi: 10.1016/j.biortech.2017.02.041. Epub 2017 Feb 13.

PMID:
28231540
11.

Using FTIR spectroscopy to model alkaline pretreatment and enzymatic saccharification of six lignocellulosic biomasses.

Sills DL, Gossett JM.

Biotechnol Bioeng. 2012 Apr;109(4):894-903. doi: 10.1002/bit.24376. Epub 2011 Nov 22.

PMID:
22094883
12.

Development and validation of a kinetic model for enzymatic saccharification of lignocellulosic biomass.

Kadam KL, Rydholm EC, McMillan JD.

Biotechnol Prog. 2004 May-Jun;20(3):698-705.

PMID:
15176871
13.

Combination of enzymatic hydrolysis and ethanol organosolv pretreatments: effect on lignin structures, delignification yields and cellulose-to-glucose conversion.

Obama P, Ricochon G, Muniglia L, Brosse N.

Bioresour Technol. 2012 May;112:156-63. doi: 10.1016/j.biortech.2012.02.080. Epub 2012 Feb 24.

PMID:
22424922
14.

High-pressure homogenization pretreatment of four different lignocellulosic biomass for enhancing enzymatic digestibility.

Jin S, Zhang G, Zhang P, Fan S, Li F.

Bioresour Technol. 2015 Apr;181:270-4. doi: 10.1016/j.biortech.2015.01.069. Epub 2015 Jan 28.

PMID:
25661305
15.

High-throughput enzymatic hydrolysis of lignocellulosic biomass via in-situ regeneration.

Bharadwaj R, Wong A, Knierim B, Singh S, Holmes BM, Auer M, Simmons BA, Adams PD, Singh AK.

Bioresour Technol. 2011 Jan;102(2):1329-37. doi: 10.1016/j.biortech.2010.08.108. Epub 2010 Sep 29.

PMID:
20884206
16.

Phenols and lignin: Key players in reducing enzymatic hydrolysis yields of steam-pretreated biomass in presence of laccase.

Oliva-Taravilla A, Tomás-Pejó E, Demuez M, González-Fernández C, Ballesteros M.

J Biotechnol. 2016 Jan 20;218:94-101. doi: 10.1016/j.jbiotec.2015.11.004. Epub 2015 Dec 9.

PMID:
26684987
17.

The dual effects of lignin content on enzymatic hydrolysis using film composed of cellulose and lignin as a structure model.

Zhang L, Zhang L, Zhou T, Wu Y, Xu F.

Bioresour Technol. 2016 Jan;200:761-9. doi: 10.1016/j.biortech.2015.10.048. Epub 2015 Oct 24.

PMID:
26575618
18.

Feedstock mixture effects on sugar monomer recovery following dilute acid pretreatment and enzymatic hydrolysis.

Brodeur-Campbell M, Klinger J, Shonnard D.

Bioresour Technol. 2012 Jul;116:320-6. doi: 10.1016/j.biortech.2012.03.090. Epub 2012 Apr 4.

PMID:
22522019
19.

A model for optimizing the enzymatic hydrolysis of ionic liquid-pretreated lignocellulose.

Shill K, Miller K, Clark DS, Blanch HW.

Bioresour Technol. 2012 Dec;126:290-7. doi: 10.1016/j.biortech.2012.08.062. Epub 2012 Aug 23.

PMID:
23079416
20.

Influence of lignin addition on the enzymatic digestibility of pretreated lignocellulosic biomasses.

Wang W, Zhu Y, Du J, Yang Y, Jin Y.

Bioresour Technol. 2015 Apr;181:7-12. doi: 10.1016/j.biortech.2015.01.026. Epub 2015 Jan 17.

PMID:
25625461

Supplemental Content

Support Center