Format
Sort by
Items per page

Send to

Choose Destination

Links from PubMed

Items: 1 to 20 of 88

1.

Mercury methylating microbial communities of boreal forest soils.

Xu J, Buck M, Eklöf K, Ahmed OO, Schaefer JK, Bishop K, Skyllberg U, Björn E, Bertilsson S, Bravo AG.

Sci Rep. 2019 Jan 24;9(1):518. doi: 10.1038/s41598-018-37383-z.

2.

Carbon Amendments Alter Microbial Community Structure and Net Mercury Methylation Potential in Sediments.

Christensen GA, Somenahally AC, Moberly JG, Miller CM, King AJ, Gilmour CC, Brown SD, Podar M, Brandt CC, Brooks SC, Palumbo AV, Wall JD, Elias DA.

Appl Environ Microbiol. 2018 Jan 17;84(3). pii: e01049-17. doi: 10.1128/AEM.01049-17. Print 2018 Feb 1.

3.

Methanogens and Iron-Reducing Bacteria: the Overlooked Members of Mercury-Methylating Microbial Communities in Boreal Lakes.

Bravo AG, Peura S, Buck M, Ahmed O, Mateos-Rivera A, Herrero Ortega S, Schaefer JK, Bouchet S, Tolu J, Björn E, Bertilsson S.

Appl Environ Microbiol. 2018 Nov 15;84(23). pii: e01774-18. doi: 10.1128/AEM.01774-18. Print 2018 Dec 1.

4.

Periphyton and Flocculent Materials Are Important Ecological Compartments Supporting Abundant and Diverse Mercury Methylator Assemblages in the Florida Everglades.

Bae HS, Dierberg FE, Ogram A.

Appl Environ Microbiol. 2019 Jun 17;85(13). pii: e00156-19. doi: 10.1128/AEM.00156-19. Print 2019 Jul 1.

PMID:
31028023
5.

Geobacteraceae are important members of mercury-methylating microbial communities of sediments impacted by waste water releases.

Bravo AG, Zopfi J, Buck M, Xu J, Bertilsson S, Schaefer JK, Poté J, Cosio C.

ISME J. 2018 Mar;12(3):802-812. doi: 10.1038/s41396-017-0007-7. Epub 2018 Jan 10.

6.

Development and Validation of Broad-Range Qualitative and Clade-Specific Quantitative Molecular Probes for Assessing Mercury Methylation in the Environment.

Christensen GA, Wymore AM, King AJ, Podar M, Hurt RA Jr, Santillan EU, Soren A, Brandt CC, Brown SD, Palumbo AV, Wall JD, Gilmour CC, Elias DA.

Appl Environ Microbiol. 2016 Sep 16;82(19):6068-78. doi: 10.1128/AEM.01271-16. Print 2016 Oct 1.

7.

Effects of disturbance and vegetation type on total and methylmercury in boreal peatland and forest soils.

Braaten HFV, de Wit HA.

Environ Pollut. 2016 Nov;218:140-149. doi: 10.1016/j.envpol.2016.08.029. Epub 2016 Aug 20.

PMID:
27552047
8.

Analysis of the microbial community structure by monitoring an Hg methylation gene (hgcA) in paddy soils along an Hg gradient.

Liu YR, Yu RQ, Zheng YM, He JZ.

Appl Environ Microbiol. 2014 May;80(9):2874-9. doi: 10.1128/AEM.04225-13. Epub 2014 Feb 28.

9.

Syntrophs dominate sequences associated with the mercury methylation-related gene hgcA in the water conservation areas of the Florida Everglades.

Bae HS, Dierberg FE, Ogram A.

Appl Environ Microbiol. 2014 Oct;80(20):6517-26. doi: 10.1128/AEM.01666-14. Epub 2014 Aug 8.

10.

Molecular evidence for novel mercury methylating microorganisms in sulfate-impacted lakes.

Jones DS, Walker GM, Johnson NW, Mitchell CPJ, Coleman Wasik JK, Bailey JV.

ISME J. 2019 Jul;13(7):1659-1675. doi: 10.1038/s41396-019-0376-1. Epub 2019 Feb 26.

PMID:
30809010
11.

Unraveling Microbial Communities Associated with Methylmercury Production in Paddy Soils.

Liu YR, Johs A, Bi L, Lu X, Hu HW, Sun D, He JZ, Gu B.

Environ Sci Technol. 2018 Nov 20;52(22):13110-13118. doi: 10.1021/acs.est.8b03052. Epub 2018 Nov 6.

PMID:
30335986
12.

Water level fluctuations influence microbial communities and mercury methylation in soils in the Three Gorges Reservoir, China.

Xiang Y, Wang Y, Zhang C, Shen H, Wang D.

J Environ Sci (China). 2018 Jun;68:206-217. doi: 10.1016/j.jes.2018.03.009. Epub 2018 Mar 17.

PMID:
29908740
13.

Mercury-methylating genes dsrB and hgcA in soils/sediments of the Three Gorges Reservoir.

Du H, Ma M, Sun T, Dai X, Yang C, Luo F, Wang D, Igarashi Y.

Environ Sci Pollut Res Int. 2017 Feb;24(5):5001-5011. doi: 10.1007/s11356-016-8213-9. Epub 2016 Dec 20.

PMID:
28000068
14.

Diversity of microbial communities potentially involved in mercury methylation in rice paddies surrounding typical mercury mining areas in China.

Liu X, Ma A, Zhuang G, Zhuang X.

Microbiologyopen. 2018 Aug;7(4):e00577. doi: 10.1002/mbo3.577. Epub 2018 Mar 12.

15.

Mercury methylation-related microbes and genes in the sediments of the Pearl River Estuary and the South China Sea.

Yuan K, Chen X, Chen P, Huang Y, Jiang J, Luan T, Chen B, Wang X.

Ecotoxicol Environ Saf. 2019 Dec 15;185:109722. doi: 10.1016/j.ecoenv.2019.109722. Epub 2019 Sep 29.

PMID:
31577991
16.

Methyl Mercury Formation in Hillslope Soils of Boreal Forests: The Role of Forest Harvest and Anaerobic Microbes.

Kronberg RM, Jiskra M, Wiederhold JG, Björn E, Skyllberg U.

Environ Sci Technol. 2016 Sep 6;50(17):9177-86. doi: 10.1021/acs.est.6b00762. Epub 2016 Aug 11.

PMID:
27461938
17.

Detection of a key Hg methylation gene, hgcA, in wetland soils.

Schaefer JK, Kronberg RM, Morel FM, Skyllberg U.

Environ Microbiol Rep. 2014 Oct;6(5):441-7.

PMID:
25646534
18.

Determining the Reliability of Measuring Mercury Cycling Gene Abundance with Correlations with Mercury and Methylmercury Concentrations.

Christensen GA, Gionfriddo CM, King AJ, Moberly JG, Miller CL, Somenahally AC, Callister SJ, Brewer H, Podar M, Brown SD, Palumbo AV, Brandt CC, Wymore AM, Brooks SC, Hwang C, Fields MW, Wall JD, Gilmour CC, Elias DA.

Environ Sci Technol. 2019 Aug 6;53(15):8649-8663. doi: 10.1021/acs.est.8b06389. Epub 2019 Jul 12.

PMID:
31260289
19.

Rice root exudates affect microbial methylmercury production in paddy soils.

Zhao JY, Ye ZH, Zhong H.

Environ Pollut. 2018 Nov;242(Pt B):1921-1929. doi: 10.1016/j.envpol.2018.07.072. Epub 2018 Jul 27.

PMID:
30072222
20.

Microbial community structure with trends in methylation gene diversity and abundance in mercury-contaminated rice paddy soils in Guizhou, China.

Vishnivetskaya TA, Hu H, Van Nostrand JD, Wymore AM, Xu X, Qiu G, Feng X, Zhou J, Brown SD, Brandt CC, Podar M, Gu B, Elias DA.

Environ Sci Process Impacts. 2018 Apr 25;20(4):673-685. doi: 10.1039/c7em00558j.

PMID:
29504614

Supplemental Content

Support Center