Format
Sort by
Items per page

Send to

Choose Destination

Links from PubMed

Items: 1 to 20 of 115

1.

The Three Dimensional Spatial Structure of Antarctic Krill Schools in the Laboratory.

Murphy DW, Olsen D, Kanagawa M, King R, Kawaguchi S, Osborn J, Webster DR, Yen J.

Sci Rep. 2019 Jan 23;9(1):381. doi: 10.1038/s41598-018-37379-9.

2.

Random sequential addition simulations of animal aggregations provide null models of group structure.

Olsen D, Murphy DW.

Bioinspir Biomim. 2019 Apr 8;14(3):035001. doi: 10.1088/1748-3190/ab0b8b.

PMID:
30818295
3.

The hydrodynamic disturbances of two species of krill: implications for aggregation structure.

Catton KB, Webster DR, Kawaguchi S, Yen J.

J Exp Biol. 2011 Jun 1;214(Pt 11):1845-56. doi: 10.1242/jeb.050997.

4.

The three-dimensional prey field of the northern krill, Meganyctiphanes norvegica, and the escape responses of their copepod prey.

Abrahamsen MB, Browman HI, Fields DM, Skiftesvik AB.

Mar Biol. 2010;157(6):1251-1258. Epub 2010 Feb 24.

5.

A circadian clock in Antarctic krill: an endogenous timing system governs metabolic output rhythms in the euphausid species Euphausia superba.

Teschke M, Wendt S, Kawaguchi S, Kramer A, Meyer B.

PLoS One. 2011;6(10):e26090. doi: 10.1371/journal.pone.0026090. Epub 2011 Oct 7.

6.

Antarctic krill population genomics: apparent panmixia, but genome complexity and large population size muddy the water.

Deagle BE, Faux C, Kawaguchi S, Meyer B, Jarman SN.

Mol Ecol. 2015 Oct;24(19):4943-59. doi: 10.1111/mec.13370. Epub 2015 Sep 26.

PMID:
26340718
7.

Pyrosequencing and de novo assembly of Antarctic krill (Euphausia superba) transcriptome to study the adaptability of krill to climate-induced environmental changes.

Meyer B, Martini P, Biscontin A, De Pittà C, Romualdi C, Teschke M, Frickenhaus S, Harms L, Freier U, Jarman S, Kawaguchi S.

Mol Ecol Resour. 2015 Nov;15(6):1460-71. doi: 10.1111/1755-0998.12408. Epub 2015 Apr 9.

8.

[Spatial point patterns of Antarctic krill fishery in the northern Antarctic Peninsula].

Yang XM, Li YX, Zhu GP.

Ying Yong Sheng Tai Xue Bao. 2016 Dec;27(12):4052-4058. doi: 10.13287/j.1001-9332.201612.008. Chinese.

PMID:
29704367
9.

At-Sea Distribution and Prey Selection of Antarctic Petrels and Commercial Krill Fisheries.

Descamps S, Tarroux A, Cherel Y, Delord K, Godø OR, Kato A, Krafft BA, Lorentsen SH, Ropert-Coudert Y, Skaret G, Varpe Ø.

PLoS One. 2016 Aug 17;11(8):e0156968. doi: 10.1371/journal.pone.0156968. eCollection 2016.

10.

Swarms of diversity at the gene cox1 in Antarctic krill.

Goodall-Copestake WP, Pérez-Espona S, Clark MS, Murphy EJ, Seear PJ, Tarling GA.

Heredity (Edinb). 2010 May;104(5):513-8. doi: 10.1038/hdy.2009.188. Epub 2010 Jan 20.

11.

Size selection of Antarctic krill (Euphausia superba) in trawls.

Krag LA, Herrmann B, Iversen SA, Engås A, Nordrum S, Krafft BA.

PLoS One. 2014 Aug 8;9(8):e102168. doi: 10.1371/journal.pone.0102168. eCollection 2014.

12.

[Analysis of influence on spatial distribution of fishing ground for Antarctic krill fishery in the northern South Shetland Islands based on GWR model].

Chen LF, Zhu GP.

Ying Yong Sheng Tai Xue Bao. 2018 Mar;29(3):938-944. doi: 10.13287/j.1001-9332.201803.037. Chinese.

PMID:
29722238
13.

Crystalline structure and thermal property characterization of chitin from Antarctic krill (Euphausia superba).

Wang Y, Chang Y, Yu L, Zhang C, Xu X, Xue Y, Li Z, Xue C.

Carbohydr Polym. 2013 Jan 30;92(1):90-7. doi: 10.1016/j.carbpol.2012.09.084. Epub 2012 Oct 6.

PMID:
23218270
14.

Identifying Risk: Concurrent Overlap of the Antarctic Krill Fishery with Krill-Dependent Predators in the Scotia Sea.

Hinke JT, Cossio AM, Goebel ME, Reiss CS, Trivelpiece WZ, Watters GM.

PLoS One. 2017 Jan 13;12(1):e0170132. doi: 10.1371/journal.pone.0170132. eCollection 2017.

15.

Aerobic capacity influences the spatial position of individuals within fish schools.

Killen SS, Marras S, Steffensen JF, McKenzie DJ.

Proc Biol Sci. 2012 Jan 22;279(1727):357-64. doi: 10.1098/rspb.2011.1006. Epub 2011 Jun 8.

16.

Adult antarctic krill feeding at abyssal depths.

Clarke A, Tyler PA.

Curr Biol. 2008 Feb 26;18(4):282-5. doi: 10.1016/j.cub.2008.01.059.

17.

Persistent organohalogen contaminant burdens in Antarctic krill (Euphausia superba) from the eastern Antarctic sector: a baseline study.

Bengtson Nash SM, Poulsen AH, Kawaguchi S, Vetter W, Schlabach M.

Sci Total Environ. 2008 Dec 15;407(1):304-14. doi: 10.1016/j.scitotenv.2008.08.034. Epub 2008 Oct 10.

PMID:
18848720
18.

Modeling the spatial and temporal dynamics of foraging movements of humpback whales (Megaptera novaeangliae) in the Western Antarctic Peninsula.

Curtice C, Johnston DW, Ducklow H, Gales N, Halpin PN, Friedlaender AS.

Mov Ecol. 2015 Jun 1;3(1):13. doi: 10.1186/s40462-015-0041-x. eCollection 2015.

19.

Relative changes in krill abundance inferred from Antarctic fur seal.

Huang T, Sun L, Stark J, Wang Y, Cheng Z, Yang Q, Sun S.

PLoS One. 2011;6(11):e27331. doi: 10.1371/journal.pone.0027331. Epub 2011 Nov 7.

20.

The Seasonal Metabolic Activity Cycle of Antarctic Krill (Euphausia superba): Evidence for a Role of Photoperiod in the Regulation of Endogenous Rhythmicity.

Piccolin F, Suberg L, King R, Kawaguchi S, Meyer B, Teschke M.

Front Physiol. 2018 Dec 20;9:1715. doi: 10.3389/fphys.2018.01715. eCollection 2018.

Supplemental Content

Support Center