Format
Sort by
Items per page

Send to

Choose Destination

Links from PubMed

Items: 1 to 20 of 110

1.

Energy-level alignment at strongly coupled organic-metal interfaces.

Chen MT, Hofmann OT, Gerlach A, Bröker B, Bürker C, Niederhausen J, Hosokai T, Zegenhagen J, Vollmer A, Rieger R, Müllen K, Schreiber F, Salzmann I, Koch N, Zojer E, Duhm S.

J Phys Condens Matter. 2019 May 15;31(19):194002. doi: 10.1088/1361-648X/ab0171. Epub 2019 Jan 23.

PMID:
30673641
2.

The interface energetics of self-assembled monolayers on metals.

Heimel G, Romaner L, Zojer E, Bredas JL.

Acc Chem Res. 2008 Jun;41(6):721-9. doi: 10.1021/ar700284q.

PMID:
18507404
3.

Electronic structure of large disc-type donors and acceptors.

Medjanik K, Kutnyakhov D, Nepijko SA, Schönhense G, Naghavi S, Alijani V, Felser C, Koch N, Rieger R, Baumgarten M, Müllen K.

Phys Chem Chem Phys. 2010 Jul 14;12(26):7184-93. doi: 10.1039/b926999a. Epub 2010 May 19.

PMID:
20485783
4.

Surface State Density Determines the Energy Level Alignment at Hybrid Perovskite/Electron Acceptors Interfaces.

Zu F, Amsalem P, Ralaiarisoa M, Schultz T, Schlesinger R, Koch N.

ACS Appl Mater Interfaces. 2017 Nov 29;9(47):41546-41552. doi: 10.1021/acsami.7b12586. Epub 2017 Nov 14.

PMID:
29111653
5.

Seleno groups control the energy-level alignment between conjugated organic molecules and metals.

Niederhausen J, Duhm S, Heimel G, Bürker C, Xin Q, Wilke A, Vollmer A, Schreiber F, Kera S, Rabe JP, Ueno N, Koch N.

J Chem Phys. 2014 Jan 7;140(1):014705. doi: 10.1063/1.4858856.

PMID:
24410235
6.

Electronic structure of hybrid interfaces for polymer-based electronics.

Fahlman M, Crispin A, Crispin X, Henze SK, de Jong MP, Osikowicz W, Tengstedt C, Salaneck WR.

J Phys Condens Matter. 2007 May 8;19(18):183202. doi: 10.1088/0953-8984/19/18/183202. Epub 2007 Apr 4.

PMID:
21690980
7.

Molecular electronic level alignment at weakly coupled organic film/metal interfaces.

Zhao J, Feng M, Dougherty DB, Sun H, Petek H.

ACS Nano. 2014 Oct 28;8(10):10988-97. doi: 10.1021/nn5049969. Epub 2014 Oct 10.

PMID:
25303040
8.

Reactive metal-organic interfaces studied with hard x-ray photoelectron spectroscopy: controlled formation of metalloporphyrin interphase layers during metal vapor deposition onto porphyrin films.

Schmid M, Kachel SR, Klein BP, Bock N, Müller P, Riedel R, Hampp N, Gottfried JM.

J Phys Condens Matter. 2019 Mar 6;31(9):094002. doi: 10.1088/1361-648X/aafa2b. Epub 2018 Dec 20.

PMID:
30572324
9.

Energy level alignment at the anode of poly(3-hexylthiophene)/fullerene-based solar cells.

Chen CP, Tien TC, Ko BT, Chen YD, Ting C.

ACS Appl Mater Interfaces. 2009 Apr;1(4):741-5. doi: 10.1021/am800259h.

PMID:
20355997
10.

The unusual mechanism of partial Fermi level pinning at metal-MoS2 interfaces.

Gong C, Colombo L, Wallace RM, Cho K.

Nano Lett. 2014;14(4):1714-20. doi: 10.1021/nl403465v. Epub 2014 Mar 27.

PMID:
24660782
11.

Organic heterojunctions: Contact-induced molecular reorientation, interface states, and charge re-distribution.

Opitz A, Wilke A, Amsalem P, Oehzelt M, Blum RP, Rabe JP, Mizokuro T, Hörmann U, Hansson R, Moons E, Koch N.

Sci Rep. 2016 Feb 18;6:21291. doi: 10.1038/srep21291.

12.

Orientation-Dependent Work-Function Modification Using Substituted Pyrene-Based Acceptors.

Hofmann OT, Glowatzki H, Bürker C, Rangger GM, Bröker B, Niederhausen J, Hosokai T, Salzmann I, Blum RP, Rieger R, Vollmer A, Rajput P, Gerlach A, Müllen K, Schreiber F, Zojer E, Koch N, Duhm S.

J Phys Chem C Nanomater Interfaces. 2017 Nov 9;121(44):24657-24668. doi: 10.1021/acs.jpcc.7b08451. Epub 2017 Oct 27.

13.

Energy Level Alignment at Metal/Solution-Processed Organic Semiconductor Interfaces.

Atxabal A, Braun S, Arnold T, Sun X, Parui S, Liu X, Gozalvez C, Llopis R, Mateo-Alonso A, Casanova F, Ortmann F, Fahlman M, Hueso LE.

Adv Mater. 2017 May;29(19). doi: 10.1002/adma.201606901. Epub 2017 Mar 15.

PMID:
28295714
14.

Energy level alignment at organic/inorganic semiconductor heterojunctions: Fermi level pinning at the molecular interlayer with a reduced energy gap.

Schlesinger R, Winkler S, Brandt M, Blumstengel S, Ovsyannikov R, Vollmer A, Koch N.

Phys Chem Chem Phys. 2019 Jul 10;21(27):15072-15079. doi: 10.1039/c9cp02763g.

PMID:
31241108
15.

Metal/oxide interfacial reactions: Oxidation of metals on SrTiO3 (100) and TiO2 (110).

Fu Q, Wagner T.

J Phys Chem B. 2005 Jun 16;109(23):11697-705.

PMID:
16852436
16.

Modeling adsorption and reactions of organic molecules at metal surfaces.

Liu W, Tkatchenko A, Scheffler M.

Acc Chem Res. 2014 Nov 18;47(11):3369-77. doi: 10.1021/ar500118y. Epub 2014 Jun 10.

17.

Carrier Transport at Metal/Amorphous Hafnium-Indium-Zinc Oxide Interfaces.

Kim S, Gil Y, Choi Y, Kim KK, Yun HJ, Son B, Choi CJ, Kim H.

ACS Appl Mater Interfaces. 2015 Oct 14;7(40):22385-93. doi: 10.1021/acsami.5b06223. Epub 2015 Oct 2.

PMID:
26411354
18.

Tuning the work function of stepped metal surfaces by adsorption of organic molecules.

Jiang Y, Li J, Su G, Ferri N, Liu W, Tkatchenko A.

J Phys Condens Matter. 2017 May 24;29(20):204001. doi: 10.1088/1361-648X/aa693e. Epub 2017 Mar 27.

PMID:
28345536
19.

Modelling energy level alignment at organic interfaces and density functional theory.

Flores F, Ortega J, Vázquez H.

Phys Chem Chem Phys. 2009 Oct 21;11(39):8658-75. doi: 10.1039/b902492c. Epub 2009 Aug 12. Review.

PMID:
20449007
20.

Quantitative Prediction of Molecular Adsorption: Structure and Binding of Benzene on Coinage Metals.

Liu W, Maaß F, Willenbockel M, Bronner C, Schulze M, Soubatch S, Tautz FS, Tegeder P, Tkatchenko A.

Phys Rev Lett. 2015 Jul 17;115(3):036104. Epub 2015 Jul 17.

PMID:
26230807

Supplemental Content

Support Center