Format
Sort by
Items per page

Send to

Choose Destination

Links from PubMed

Items: 1 to 20 of 102

1.

An evolving view of methane metabolism in the Archaea.

Evans PN, Boyd JA, Leu AO, Woodcroft BJ, Parks DH, Hugenholtz P, Tyson GW.

Nat Rev Microbiol. 2019 Apr;17(4):219-232. doi: 10.1038/s41579-018-0136-7. Epub 2019 Jan 21. Review.

PMID:
30664670
2.

Methane metabolism in the archaeal phylum Bathyarchaeota revealed by genome-centric metagenomics.

Evans PN, Parks DH, Chadwick GL, Robbins SJ, Orphan VJ, Golding SD, Tyson GW.

Science. 2015 Oct 23;350(6259):434-8. doi: 10.1126/science.aac7745.

3.

Methylotrophic methanogenesis discovered in the archaeal phylum Verstraetearchaeota.

Vanwonterghem I, Evans PN, Parks DH, Jensen PD, Woodcroft BJ, Hugenholtz P, Tyson GW.

Nat Microbiol. 2016 Oct 3;1:16170. doi: 10.1038/nmicrobiol.2016.170.

PMID:
27694807
4.

Identification of methyl coenzyme M reductase A (mcrA) genes associated with methane-oxidizing archaea.

Hallam SJ, Girguis PR, Preston CM, Richardson PM, DeLong EF.

Appl Environ Microbiol. 2003 Sep;69(9):5483-91.

5.

Wide diversity of methane and short-chain alkane metabolisms in uncultured archaea.

Borrel G, Adam PS, McKay LJ, Chen LX, Sierra-García IN, Sieber CMK, Letourneur Q, Ghozlane A, Andersen GL, Li WJ, Hallam SJ, Muyzer G, de Oliveira VM, Inskeep WP, Banfield JF, Gribaldo S.

Nat Microbiol. 2019 Apr;4(4):603-613. doi: 10.1038/s41564-019-0363-3. Epub 2019 Mar 4.

6.

Expanding anaerobic alkane metabolism in the domain of Archaea.

Wang Y, Wegener G, Hou J, Wang F, Xiao X.

Nat Microbiol. 2019 Apr;4(4):595-602. doi: 10.1038/s41564-019-0364-2. Epub 2019 Mar 4. Review.

PMID:
30833728
7.

Structure of a methyl-coenzyme M reductase from Black Sea mats that oxidize methane anaerobically.

Shima S, Krueger M, Weinert T, Demmer U, Kahnt J, Thauer RK, Ermler U.

Nature. 2011 Nov 27;481(7379):98-101. doi: 10.1038/nature10663.

PMID:
22121022
8.

Methyl-coenzyme M reductase and the anaerobic oxidation of methane in methanotrophic Archaea.

Shima S, Thauer RK.

Curr Opin Microbiol. 2005 Dec;8(6):643-8. Epub 2005 Oct 20. Review.

PMID:
16242993
9.

Divergent methyl-coenzyme M reductase genes in a deep-subseafloor Archaeoglobi.

Boyd JA, Jungbluth SP, Leu AO, Evans PN, Woodcroft BJ, Chadwick GL, Orphan VJ, Amend JP, Rappé MS, Tyson GW.

ISME J. 2019 May;13(5):1269-1279. doi: 10.1038/s41396-018-0343-2. Epub 2019 Jan 16.

10.

Methanogenesis and the Wood-Ljungdahl Pathway: An Ancient, Versatile, and Fragile Association.

Borrel G, Adam PS, Gribaldo S.

Genome Biol Evol. 2016 Jun 13;8(6):1706-11. doi: 10.1093/gbe/evw114. Review.

11.

Hydrogenotrophic methanogenesis in archaeal phylum Verstraetearchaeota reveals the shared ancestry of all methanogens.

Berghuis BA, Yu FB, Schulz F, Blainey PC, Woyke T, Quake SR.

Proc Natl Acad Sci U S A. 2019 Mar 12;116(11):5037-5044. doi: 10.1073/pnas.1815631116. Epub 2019 Feb 27.

12.

Molecular tools for investigating ANME community structure and function.

Hallam SJ, Pagé AP, Constan L, Song YC, Norbeck AD, Brewer H, Pasa-Tolic L.

Methods Enzymol. 2011;494:75-90. doi: 10.1016/B978-0-12-385112-3.00004-4.

PMID:
21402210
13.

Post-translational thioamidation of methyl-coenzyme M reductase, a key enzyme in methanogenic and methanotrophic Archaea.

Nayak DD, Mahanta N, Mitchell DA, Metcalf WW.

Elife. 2017 Sep 7;6. pii: e29218. doi: 10.7554/eLife.29218.

14.

Methane as fuel for anaerobic microorganisms.

Thauer RK, Shima S.

Ann N Y Acad Sci. 2008 Mar;1125:158-70. Epub 2007 Dec 20.

PMID:
18096853
15.

Molecular characterization of potential nitrogen fixation by anaerobic methane-oxidizing archaea in the methane seep sediments at the number 8 Kumano Knoll in the Kumano Basin, offshore of Japan.

Miyazaki J, Higa R, Toki T, Ashi J, Tsunogai U, Nunoura T, Imachi H, Takai K.

Appl Environ Microbiol. 2009 Nov;75(22):7153-62. doi: 10.1128/AEM.01184-09. Epub 2009 Sep 25.

16.

Denitrifying bacteria anaerobically oxidize methane in the absence of Archaea.

Ettwig KF, Shima S, van de Pas-Schoonen KT, Kahnt J, Medema MH, Op den Camp HJ, Jetten MS, Strous M.

Environ Microbiol. 2008 Nov;10(11):3164-73. doi: 10.1111/j.1462-2920.2008.01724.x. Epub 2008 Aug 20.

PMID:
18721142
17.

Insights into the ecological roles and evolution of methyl-coenzyme M reductase-containing hot spring Archaea.

Hua ZS, Wang YL, Evans PN, Qu YN, Goh KM, Rao YZ, Qi YL, Li YX, Huang MJ, Jiao JY, Chen YT, Mao YP, Shu WS, Hozzein W, Hedlund BP, Tyson GW, Zhang T, Li WJ.

Nat Commun. 2019 Oct 8;10(1):4574. doi: 10.1038/s41467-019-12574-y.

18.

Post-translational modifications in the active site region of methyl-coenzyme M reductase from methanogenic and methanotrophic archaea.

Kahnt J, Buchenau B, Mahlert F, Krüger M, Shima S, Thauer RK.

FEBS J. 2007 Sep;274(18):4913-21. Epub 2007 Aug 24.

19.

Community Composition and Ultrastructure of a Nitrate-Dependent Anaerobic Methane-Oxidizing Enrichment Culture.

Gambelli L, Guerrero-Cruz S, Mesman RJ, Cremers G, Jetten MSM, Op den Camp HJM, Kartal B, Lueke C, van Niftrik L.

Appl Environ Microbiol. 2018 Jan 17;84(3). pii: e02186-17. doi: 10.1128/AEM.02186-17. Print 2018 Feb 1.

20.

Temporal evolution of methane cycling and phylogenetic diversity of archaea in sediments from a deep-sea whale-fall in Monterey Canyon, California.

Goffredi SK, Wilpiszeski R, Lee R, Orphan VJ.

ISME J. 2008 Feb;2(2):204-20. doi: 10.1038/ismej.2007.103. Epub 2008 Jan 24.

PMID:
18219285

Supplemental Content

Support Center