Format
Sort by
Items per page

Send to

Choose Destination

Links from PubMed

Items: 1 to 20 of 89

1.

Nanobody interaction unveils structure, dynamics and proteotoxicity of the Finnish-type amyloidogenic gelsolin variant.

Giorgino T, Mattioni D, Hassan A, Milani M, Mastrangelo E, Barbiroli A, Verhelle A, Gettemans J, Barzago MM, Diomede L, de Rosa M.

Biochim Biophys Acta Mol Basis Dis. 2019 Mar 1;1865(3):648-660. doi: 10.1016/j.bbadis.2019.01.010. Epub 2019 Jan 6.

PMID:
30625383
2.

Gelsolin domain 2 Ca2+ affinity determines susceptibility to furin proteolysis and familial amyloidosis of finnish type.

Huff ME, Page LJ, Balch WE, Kelly JW.

J Mol Biol. 2003 Nov 14;334(1):119-27.

PMID:
14596804
3.

Elucidating the mechanism of familial amyloidosis- Finnish type: NMR studies of human gelsolin domain 2.

Kazmirski SL, Howard MJ, Isaacson RL, Fersht AR.

Proc Natl Acad Sci U S A. 2000 Sep 26;97(20):10706-11.

4.

Non-Invasive Imaging of Amyloid Deposits in a Mouse Model of AGel Using 99mTc-Modified Nanobodies and SPECT/CT.

Verhelle A, Van Overbeke W, Peleman C, De Smet R, Zwaenepoel O, Lahoutte T, Van Dorpe J, Devoogdt N, Gettemans J.

Mol Imaging Biol. 2016 Dec;18(6):887-897.

PMID:
27130233
5.

Molecular basis of a novel renal amyloidosis due to N184K gelsolin variant.

Bonì F, Milani M, Porcari R, Barbiroli A, Ricagno S, de Rosa M.

Sci Rep. 2016 Sep 16;6:33463. doi: 10.1038/srep33463.

6.

An ER-directed gelsolin nanobody targets the first step in amyloid formation in a gelsolin amyloidosis mouse model.

Van Overbeke W, Wongsantichon J, Everaert I, Verhelle A, Zwaenepoel O, Loonchanta A, Burtnick LD, De Ganck A, Hochepied T, Haigh J, Cuvelier C, Derave W, Robinson RC, Gettemans J.

Hum Mol Genet. 2015 May 1;24(9):2492-507. doi: 10.1093/hmg/ddv010. Epub 2015 Jan 18.

PMID:
25601851
7.

Gelsolin amyloidosis: genetics, biochemistry, pathology and possible strategies for therapeutic intervention.

Solomon JP, Page LJ, Balch WE, Kelly JW.

Crit Rev Biochem Mol Biol. 2012 May-Jun;47(3):282-96. doi: 10.3109/10409238.2012.661401. Epub 2012 Feb 24. Review.

8.

Chaperone nanobodies protect gelsolin against MT1-MMP degradation and alleviate amyloid burden in the gelsolin amyloidosis mouse model.

Van Overbeke W, Verhelle A, Everaert I, Zwaenepoel O, Vandekerckhove J, Cuvelier C, Derave W, Gettemans J.

Mol Ther. 2014 Oct;22(10):1768-78. doi: 10.1038/mt.2014.132. Epub 2014 Jul 15.

9.

The Gelsolin Pathogenic D187N Mutant Exhibits Altered Conformational Stability and Forms Amyloidogenic Oligomers.

Srivastava A, Singh J, Singh Yadav SP, Arya P, Kalim F, Rose P, Ashish, Kundu B.

Biochemistry. 2018 Apr 24;57(16):2359-2372. doi: 10.1021/acs.biochem.8b00039. Epub 2018 Apr 11.

PMID:
29637772
10.

Destabilization of Ca2+-free gelsolin may not be responsible for proteolysis in Familial Amyloidosis of Finnish Type.

Ratnaswamy G, Huff ME, Su AI, Rion S, Kelly JW.

Proc Natl Acad Sci U S A. 2001 Feb 27;98(5):2334-9. Epub 2001 Feb 20.

11.

Loss of a metal-binding site in gelsolin leads to familial amyloidosis-Finnish type.

Kazmirski SL, Isaacson RL, An C, Buckle A, Johnson CM, Daggett V, Fersht AR.

Nat Struct Biol. 2002 Feb;9(2):112-6.

PMID:
11753432
12.

Equilibria and kinetics of folding of gelsolin domain 2 and mutants involved in familial amyloidosis-Finnish type.

Isaacson RL, Weeds AG, Fersht AR.

Proc Natl Acad Sci U S A. 1999 Sep 28;96(20):11247-52.

13.

Secretion of amyloidogenic gelsolin progressively compromises protein homeostasis leading to the intracellular aggregation of proteins.

Page LJ, Suk JY, Bazhenova L, Fleming SM, Wood M, Jiang Y, Guo LT, Mizisin AP, Kisilevsky R, Shelton GD, Balch WE, Kelly JW.

Proc Natl Acad Sci U S A. 2009 Jul 7;106(27):11125-30. doi: 10.1073/pnas.0811753106. Epub 2009 Jun 19.

14.

Furin initiates gelsolin familial amyloidosis in the Golgi through a defect in Ca(2+) stabilization.

Chen CD, Huff ME, Matteson J, Page L, Phillips R, Kelly JW, Balch WE.

EMBO J. 2001 Nov 15;20(22):6277-87.

15.

AAV9 delivered bispecific nanobody attenuates amyloid burden in the gelsolin amyloidosis mouse model.

Verhelle A, Nair N, Everaert I, Van Overbeke W, Supply L, Zwaenepoel O, Peleman C, Van Dorpe J, Lahoutte T, Devoogdt N, Derave W, Chuah MK, VandenDriessche T, Gettemans J.

Hum Mol Genet. 2017 Apr 1;26(7):1353-1364. doi: 10.1093/hmg/ddx056. Erratum in: Hum Mol Genet. 2017 Aug 1;26(15):3030.

PMID:
28334940
16.

The 8 and 5 kDa fragments of plasma gelsolin form amyloid fibrils by a nucleated polymerization mechanism, while the 68 kDa fragment is not amyloidogenic.

Solomon JP, Yonemoto IT, Murray AN, Price JL, Powers ET, Balch WE, Kelly JW.

Biochemistry. 2009 Dec 8;48(48):11370-80. doi: 10.1021/bi901368e.

17.

The amyloidogenicity of gelsolin is controlled by proteolysis and pH.

Ratnaswamy G, Koepf E, Bekele H, Yin H, Kelly JW.

Chem Biol. 1999 May;6(5):293-304.

18.

Ca2+ binding by domain 2 plays a critical role in the activation and stabilization of gelsolin.

Nag S, Ma Q, Wang H, Chumnarnsilpa S, Lee WL, Larsson M, Kannan B, Hernandez-Valladares M, Burtnick LD, Robinson RC.

Proc Natl Acad Sci U S A. 2009 Aug 18;106(33):13713-8. doi: 10.1073/pnas.0812374106. Epub 2009 Aug 4.

19.

Gelsolin pathogenic Gly167Arg mutation promotes domain-swap dimerization of the protein.

Bonì F, Milani M, Barbiroli A, Diomede L, Mastrangelo E, de Rosa M.

Hum Mol Genet. 2018 Jan 1;27(1):53-65. doi: 10.1093/hmg/ddx383.

Supplemental Content

Support Center