Format
Sort by
Items per page

Send to

Choose Destination

Links from PubMed

Items: 1 to 20 of 99

1.

Identification of genes required for eye development by high-throughput screening of mouse knockouts.

Moore BA, Leonard BC, Sebbag L, Edwards SG, Cooper A, Imai DM, Straiton E, Santos L, Reilly C, Griffey SM, Bower L, Clary D, Mason J, Roux MJ, Meziane H, Herault Y; International Mouse Phenotyping Consortium, McKerlie C, Flenniken AM, Nutter LMJ, Berberovic Z, Owen C, Newbigging S, Adissu H, Eskandarian M, Hsu CW, Kalaga S, Udensi U, Asomugha C, Bohat R, Gallegos JJ, Seavitt JR, Heaney JD, Beaudet AL, Dickinson ME, Justice MJ, Philip V, Kumar V, Svenson KL, Braun RE, Wells S, Cater H, Stewart M, Clementson-Mobbs S, Joynson R, Gao X, Suzuki T, Wakana S, Smedley D, Seong JK, Tocchini-Valentini G, Moore M, Fletcher C, Karp N, Ramirez-Solis R, White JK, de Angelis MH, Wurst W, Thomasy SM, Flicek P, Parkinson H, Brown SDM, Meehan TF, Nishina PM, Murray SA, Krebs MP, Mallon AM, Lloyd KCK, Murphy CJ, Moshiri A.

Commun Biol. 2018 Dec 21;1:236. doi: 10.1038/s42003-018-0226-0. eCollection 2018. Erratum in: Commun Biol. 2019 Mar 7;2:97.

2.

Disease model discovery from 3,328 gene knockouts by The International Mouse Phenotyping Consortium.

Meehan TF, Conte N, West DB, Jacobsen JO, Mason J, Warren J, Chen CK, Tudose I, Relac M, Matthews P, Karp N, Santos L, Fiegel T, Ring N, Westerberg H, Greenaway S, Sneddon D, Morgan H, Codner GF, Stewart ME, Brown J, Horner N; International Mouse Phenotyping Consortium, Haendel M, Washington N, Mungall CJ, Reynolds CL, Gallegos J, Gailus-Durner V, Sorg T, Pavlovic G, Bower LR, Moore M, Morse I, Gao X, Tocchini-Valentini GP, Obata Y, Cho SY, Seong JK, Seavitt J, Beaudet AL, Dickinson ME, Herault Y, Wurst W, de Angelis MH, Lloyd KCK, Flenniken AM, Nutter LMJ, Newbigging S, McKerlie C, Justice MJ, Murray SA, Svenson KL, Braun RE, White JK, Bradley A, Flicek P, Wells S, Skarnes WC, Adams DJ, Parkinson H, Mallon AM, Brown SDM, Smedley D.

Nat Genet. 2017 Aug;49(8):1231-1238. doi: 10.1038/ng.3901. Epub 2017 Jun 26.

3.

Histopathology reveals correlative and unique phenotypes in a high-throughput mouse phenotyping screen.

Adissu HA, Estabel J, Sunter D, Tuck E, Hooks Y, Carragher DM, Clarke K, Karp NA; Sanger Mouse Genetics Project, Newbigging S, Jones N, Morikawa L, White JK, McKerlie C.

Dis Model Mech. 2014 May;7(5):515-24. doi: 10.1242/dmm.015263. Epub 2014 Mar 20.

4.

Mouse eye enucleation for remote high-throughput phenotyping.

Mahajan VB, Skeie JM, Assefnia AH, Mahajan M, Tsang SH.

J Vis Exp. 2011 Nov 19;(57). pii: 3184. doi: 10.3791/3184.

5.

The International Mouse Phenotyping Consortium: past and future perspectives on mouse phenotyping.

Brown SD, Moore MW.

Mamm Genome. 2012 Oct;23(9-10):632-40. doi: 10.1007/s00335-012-9427-x. Epub 2012 Sep 1.

6.

New models for human disease from the International Mouse Phenotyping Consortium.

Cacheiro P, Haendel MA, Smedley D; International Mouse Phenotyping Consortium and the Monarch Initiative.

Mamm Genome. 2019 Jun;30(5-6):143-150. doi: 10.1007/s00335-019-09804-5. Epub 2019 May 24. Review.

7.

High-throughput discovery of novel developmental phenotypes.

Dickinson ME, Flenniken AM, Ji X, Teboul L, Wong MD, White JK, Meehan TF, Weninger WJ, Westerberg H, Adissu H, Baker CN, Bower L, Brown JM, Caddle LB, Chiani F, Clary D, Cleak J, Daly MJ, Denegre JM, Doe B, Dolan ME, Edie SM, Fuchs H, Gailus-Durner V, Galli A, Gambadoro A, Gallegos J, Guo S, Horner NR, Hsu CW, Johnson SJ, Kalaga S, Keith LC, Lanoue L, Lawson TN, Lek M, Mark M, Marschall S, Mason J, McElwee ML, Newbigging S, Nutter LM, Peterson KA, Ramirez-Solis R, Rowland DJ, Ryder E, Samocha KE, Seavitt JR, Selloum M, Szoke-Kovacs Z, Tamura M, Trainor AG, Tudose I, Wakana S, Warren J, Wendling O, West DB, Wong L, Yoshiki A; International Mouse Phenotyping Consortium; Jackson Laboratory; Infrastructure Nationale PHENOMIN, Institut Clinique de la Souris (ICS); Charles River Laboratories; MRC Harwell; Toronto Centre for Phenogenomics; Wellcome Trust Sanger Institute; RIKEN BioResource Center, MacArthur DG, Tocchini-Valentini GP, Gao X, Flicek P, Bradley A, Skarnes WC, Justice MJ, Parkinson HE, Moore M, Wells S, Braun RE, Svenson KL, de Angelis MH, Herault Y, Mohun T, Mallon AM, Henkelman RM, Brown SD, Adams DJ, Lloyd KC, McKerlie C, Beaudet AL, Bućan M, Murray SA.

Nature. 2016 Sep 22;537(7621):508-514. doi: 10.1038/nature19356. Epub 2016 Sep 14. Erratum in: Nature. 2017 Nov 16;551(7680):398.

8.

Enhancement of Plant Productivity in the Post-Genomics Era.

Thao NP, Tran LS.

Curr Genomics. 2016 Aug;17(4):295-6. doi: 10.2174/138920291704160607182507.

9.

Predicting human disease mutations and identifying drug targets from mouse gene knockout phenotyping campaigns.

Brommage R, Powell DR, Vogel P.

Dis Model Mech. 2019 May 7;12(5). pii: dmm038224. doi: 10.1242/dmm.038224. Review.

10.

The Tennessee Mouse Genome Consortium: identification of ocular mutants.

Jablonski MM, Wang X, Lu L, Miller DR, Rinchik EM, Williams RW, Goldowitz D.

Vis Neurosci. 2005 Sep-Oct;22(5):595-604.

PMID:
16332270
11.

Rapid-throughput skeletal phenotyping of 100 knockout mice identifies 9 new genes that determine bone strength.

Bassett JH, Gogakos A, White JK, Evans H, Jacques RM, van der Spek AH; Sanger Mouse Genetics Project, Ramirez-Solis R, Ryder E, Sunter D, Boyde A, Campbell MJ, Croucher PI, Williams GR.

PLoS Genet. 2012;8(8):e1002858. doi: 10.1371/journal.pgen.1002858. Epub 2012 Aug 2.

12.

Rapid quantification of mutant fitness in diverse bacteria by sequencing randomly bar-coded transposons.

Wetmore KM, Price MN, Waters RJ, Lamson JS, He J, Hoover CA, Blow MJ, Bristow J, Butland G, Arkin AP, Deutschbauer A.

MBio. 2015 May 12;6(3):e00306-15. doi: 10.1128/mBio.00306-15.

13.

Exploring the elephant: histopathology in high-throughput phenotyping of mutant mice.

Schofield PN, Vogel P, Gkoutos GV, Sundberg JP.

Dis Model Mech. 2012 Jan;5(1):19-25. doi: 10.1242/dmm.008334. Epub 2011 Oct 25. Review.

14.

Sequencing of a 'mouse azoospermia' gene panel in azoospermic men: identification of RNF212 and STAG3 mutations as novel genetic causes of meiotic arrest.

Riera-Escamilla A, Enguita-Marruedo A, Moreno-Mendoza D, Chianese C, Sleddens-Linkels E, Contini E, Benelli M, Natali A, Colpi GM, Ruiz-Castañé E, Maggi M, Baarends WM, Krausz C.

Hum Reprod. 2019 Jun 4;34(6):978-988. doi: 10.1093/humrep/dez042.

PMID:
31125047
15.

Personalized diagnosis and management of congenital cataract by next-generation sequencing.

Gillespie RL, O'Sullivan J, Ashworth J, Bhaskar S, Williams S, Biswas S, Kehdi E, Ramsden SC, Clayton-Smith J, Black GC, Lloyd IC.

Ophthalmology. 2014 Nov;121(11):2124-37.e1-2. doi: 10.1016/j.ophtha.2014.06.006. Epub 2014 Aug 19.

PMID:
25148791
16.

Bloomsbury report on mouse embryo phenotyping: recommendations from the IMPC workshop on embryonic lethal screening.

Adams D, Baldock R, Bhattacharya S, Copp AJ, Dickinson M, Greene ND, Henkelman M, Justice M, Mohun T, Murray SA, Pauws E, Raess M, Rossant J, Weaver T, West D.

Dis Model Mech. 2013 May;6(3):571-9. doi: 10.1242/dmm.011833. Epub 2013 Mar 18. Erratum in: Dis Model Mech. 2013 Jul;6(4):1049.

17.

High-throughput mouse phenotyping.

Gates H, Mallon AM, Brown SD; EUMODIC Consortium.

Methods. 2011 Apr;53(4):394-404. doi: 10.1016/j.ymeth.2010.12.017. Epub 2010 Dec 23.

PMID:
21185382
18.

Current strategies for mutation detection in phenotype-driven screens utilising next generation sequencing.

Simon MM, Moresco EM, Bull KR, Kumar S, Mallon AM, Beutler B, Potter PK.

Mamm Genome. 2015 Oct;26(9-10):486-500. doi: 10.1007/s00335-015-9603-x. Epub 2015 Oct 8. Review.

19.

Delivering and phenotyping mouse models for the respiratory community: a report on the Biochemical Society Workshop.

Dean C, Bingle C, Hind M.

Clin Sci (Lond). 2013 Nov;125(10):495-500. doi: 10.1042/CS20130274.

PMID:
23855728
20.

Supplemental Content

Support Center