Format
Sort by
Items per page

Send to

Choose Destination

Links from PubMed

Items: 1 to 20 of 104

1.

Automated in situ chromatin profiling efficiently resolves cell types and gene regulatory programs.

Janssens DH, Wu SJ, Sarthy JF, Meers MP, Myers CH, Olson JM, Ahmad K, Henikoff S.

Epigenetics Chromatin. 2018 Dec 21;11(1):74. doi: 10.1186/s13072-018-0243-8.

2.

High-resolution genome-wide mapping of histone modifications.

Roh TY, Ngau WC, Cui K, Landsman D, Zhao K.

Nat Biotechnol. 2004 Aug;22(8):1013-6. Epub 2004 Jul 4.

PMID:
15235610
3.

Histone modifications in zebrafish development.

Cunliffe VT.

Methods Cell Biol. 2016;135:361-85. doi: 10.1016/bs.mcb.2016.05.005. Epub 2016 Jun 20.

PMID:
27443936
4.

CUT&Tag for efficient epigenomic profiling of small samples and single cells.

Kaya-Okur HS, Wu SJ, Codomo CA, Pledger ES, Bryson TD, Henikoff JG, Ahmad K, Henikoff S.

Nat Commun. 2019 Apr 29;10(1):1930. doi: 10.1038/s41467-019-09982-5.

5.

Clustered ChIP-Seq-defined transcription factor binding sites and histone modifications map distinct classes of regulatory elements.

Rye M, Sætrom P, Håndstad T, Drabløs F.

BMC Biol. 2011 Nov 24;9:80. doi: 10.1186/1741-7007-9-80.

6.

An efficient targeted nuclease strategy for high-resolution mapping of DNA binding sites.

Skene PJ, Henikoff S.

Elife. 2017 Jan 16;6. pii: e21856. doi: 10.7554/eLife.21856.

7.

Chromatin Immunoprecipitation (ChIP) in Mouse T-cell Lines.

Giaimo BD, Ferrante F, Borggrefe T.

J Vis Exp. 2017 Jun 17;(124). doi: 10.3791/55907.

8.

The homeodomain transcription factor CDP/cut interacts with the cell cycle regulatory element of histone H4 genes packaged into nucleosomes.

Last TJ, van Wijnen AJ, de Ridder MC, Stein GS, Stein JL.

Mol Biol Rep. 1999 Aug;26(3):185-94.

PMID:
10532314
9.

Chromatin immunoprecipitation from fixed clinical tissues reveals tumor-specific enhancer profiles.

Cejas P, Li L, O'Neill NK, Duarte M, Rao P, Bowden M, Zhou CW, Mendiola M, Burgos E, Feliu J, Moreno-Rubio J, Guadalajara H, Moreno V, García-Olmo D, Bellmunt J, Mullane S, Hirsch M, Sweeney CJ, Richardson A, Liu XS, Brown M, Shivdasani RA, Long HW.

Nat Med. 2016 Jun;22(6):685-91. doi: 10.1038/nm.4085. Epub 2016 Apr 25.

PMID:
27111282
10.

The pluripotent regulatory circuitry connecting promoters to their long-range interacting elements.

Schoenfelder S, Furlan-Magaril M, Mifsud B, Tavares-Cadete F, Sugar R, Javierre BM, Nagano T, Katsman Y, Sakthidevi M, Wingett SW, Dimitrova E, Dimond A, Edelman LB, Elderkin S, Tabbada K, Darbo E, Andrews S, Herman B, Higgs A, LeProust E, Osborne CS, Mitchell JA, Luscombe NM, Fraser P.

Genome Res. 2015 Apr;25(4):582-97. doi: 10.1101/gr.185272.114. Epub 2015 Mar 9.

11.

Characterization of hundreds of regulatory landscapes in developing limbs reveals two regimes of chromatin folding.

Andrey G, Schöpflin R, Jerković I, Heinrich V, Ibrahim DM, Paliou C, Hochradel M, Timmermann B, Haas S, Vingron M, Mundlos S.

Genome Res. 2017 Feb;27(2):223-233. doi: 10.1101/gr.213066.116. Epub 2016 Dec 6.

12.

A Multiplexed System for Quantitative Comparisons of Chromatin Landscapes.

van Galen P, Viny AD, Ram O, Ryan RJ, Cotton MJ, Donohue L, Sievers C, Drier Y, Liau BB, Gillespie SM, Carroll KM, Cross MB, Levine RL, Bernstein BE.

Mol Cell. 2016 Jan 7;61(1):170-80. doi: 10.1016/j.molcel.2015.11.003. Epub 2015 Dec 10.

13.

Myc-binding-site recognition in the human genome is determined by chromatin context.

Guccione E, Martinato F, Finocchiaro G, Luzi L, Tizzoni L, Dall' Olio V, Zardo G, Nervi C, Bernard L, Amati B.

Nat Cell Biol. 2006 Jul;8(7):764-70. Epub 2006 Jun 11.

PMID:
16767079
14.

Chromatin immunoprecipitation (ChIP) for analysis of histone modifications and chromatin-associated proteins.

Milne TA, Zhao K, Hess JL.

Methods Mol Biol. 2009;538:409-23. doi: 10.1007/978-1-59745-418-6_21.

15.

Enhancer function regulated by combinations of transcription factors and cofactors.

Nakagawa T, Yoneda M, Higashi M, Ohkuma Y, Ito T.

Genes Cells. 2018 Oct;23(10):808-821. doi: 10.1111/gtc.12634. Epub 2018 Aug 31. Review.

16.

A novel high-throughput B1H-ChIP method for efficiently validating and screening specific regulator-target promoter interactions.

Zeng J, Li Y, Zhang S, He ZG.

Appl Microbiol Biotechnol. 2012 Feb;93(3):1257-69. doi: 10.1007/s00253-011-3748-7. Epub 2011 Dec 22.

PMID:
22189860
17.

Genome-Wide Identification of Transcription Factor-Binding Sites in Quiescent Adult Neural Stem Cells.

Mukherjee S, Hsieh J.

Methods Mol Biol. 2018;1686:265-286. doi: 10.1007/978-1-4939-7371-2_19.

PMID:
29030827
18.

Cell- and stage-specific chromatin structure across the Complement receptor 2 (CR2/CD21) promoter coincide with CBF1 and C/EBP-beta binding in B cells.

Cruickshank MN, Fenwick E, Karimi M, Abraham LJ, Ulgiati D.

Mol Immunol. 2009 Aug;46(13):2613-22. doi: 10.1016/j.molimm.2009.05.001. Epub 2009 May 31.

PMID:
19487031
19.

Enhancer identification in mouse embryonic stem cells using integrative modeling of chromatin and genomic features.

Chen CY, Morris Q, Mitchell JA.

BMC Genomics. 2012 Apr 26;13:152. doi: 10.1186/1471-2164-13-152.

20.

VHL Deficiency Drives Enhancer Activation of Oncogenes in Clear Cell Renal Cell Carcinoma.

Yao X, Tan J, Lim KJ, Koh J, Ooi WF, Li Z, Huang D, Xing M, Chan YS, Qu JZ, Tay ST, Wijaya G, Lam YN, Hong JH, Lee-Lim AP, Guan P, Ng MSW, He CZ, Lin JS, Nandi T, Qamra A, Xu C, Myint SS, Davies JOJ, Goh JY, Loh G, Tan BC, Rozen SG, Yu Q, Tan IBH, Cheng CWS, Li S, Chang KTE, Tan PH, Silver DL, Lezhava A, Steger G, Hughes JR, Teh BT, Tan P.

Cancer Discov. 2017 Nov;7(11):1284-1305. doi: 10.1158/2159-8290.CD-17-0375. Epub 2017 Sep 11.

Supplemental Content

Support Center